ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02472
  4. Cited By
Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor
  Imagery Classification

Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification

5 February 2022
Ce Ju
Cuntai Guan
ArXivPDFHTML

Papers citing "Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification"

11 / 11 papers shown
Title
NiSNN-A: Non-iterative Spiking Neural Networks with Attention with Application to Motor Imagery EEG Classification
NiSNN-A: Non-iterative Spiking Neural Networks with Attention with Application to Motor Imagery EEG Classification
Chuhan Zhang
Wei Pan
Cosimo Della Santina
63
0
0
28 Jan 2025
Deep Optimal Transport for Domain Adaptation on SPD Manifolds
Deep Optimal Transport for Domain Adaptation on SPD Manifolds
Ce Ju
Cuntai Guan
84
3
0
15 Jan 2022
On the interpretation of linear Riemannian tangent space model
  parameters in M/EEG
On the interpretation of linear Riemannian tangent space model parameters in M/EEG
Reinmar J. Kobler
J. Hirayama
Lea Hehenberger
G. Müller-Putz
M. Kawanabe
29
11
0
30 Jul 2021
Federated Transfer Learning for EEG Signal Classification
Federated Transfer Learning for EEG Signal Classification
Ce Ju
Dashan Gao
R. Mane
Ben Tan
Yang Liu
Cuntai Guan
FedML
35
107
0
26 Apr 2020
Manifold-regression to predict from MEG/EEG brain signals without source
  modeling
Manifold-regression to predict from MEG/EEG brain signals without source modeling
D. Sabbagh
Pierre Ablin
Gaël Varoquaux
Alexandre Gramfort
Denis A. Engemann
43
58
0
04 Jun 2019
Analyzing Dynamical Brain Functional Connectivity As Trajectories on
  Space of Covariance Matrices
Analyzing Dynamical Brain Functional Connectivity As Trajectories on Space of Covariance Matrices
Mengyu Dai
Zhengwu Zhang
Anuj Srivastava
43
31
0
10 Apr 2019
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
141
3,848
0
10 Apr 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
595
3,264
0
24 Nov 2016
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer
  Interfaces
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
Vernon J. Lawhern
Amelia J. Solon
Nicholas R. Waytowich
Stephen M. Gordon
C. Hung
Brent Lance
OOD
86
2,855
0
23 Nov 2016
A New Generation of Brain-Computer Interface Based on Riemannian
  Geometry
A New Generation of Brain-Computer Interface Based on Riemannian Geometry
M. Congedo
A. Barachant
Anton Andreev
59
94
0
30 Oct 2013
Invariant Scattering Convolution Networks
Invariant Scattering Convolution Networks
Joan Bruna
S. Mallat
102
1,272
0
05 Mar 2012
1