ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02306
  4. Cited By
Rediscovering orbital mechanics with machine learning

Rediscovering orbital mechanics with machine learning

4 February 2022
Pablo Lemos
N. Jeffrey
M. Cranmer
S. Ho
Peter W. Battaglia
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Rediscovering orbital mechanics with machine learning"

20 / 20 papers shown
Title
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
Rudy Morel
Jiequn Han
Edouard Oyallon
AI4CE
56
0
0
28 Apr 2025
SyMANTIC: An Efficient Symbolic Regression Method for Interpretable and Parsimonious Model Discovery in Science and Beyond
SyMANTIC: An Efficient Symbolic Regression Method for Interpretable and Parsimonious Model Discovery in Science and Beyond
Madhav Muthyala
Farshud Sorourifar
You Peng
J. Paulson
55
1
0
05 Feb 2025
Generating particle physics Lagrangians with transformers
Generating particle physics Lagrangians with transformers
Yong Sheng Koay
Rikard Enberg
Stefano Moretti
Eliel Camargo-Molina
44
0
0
17 Jan 2025
Inferring Interpretable Models of Fragmentation Functions using Symbolic Regression
Inferring Interpretable Models of Fragmentation Functions using Symbolic Regression
N. Makke
Sanjay Chawla
54
0
0
13 Jan 2025
Decomposing heterogeneous dynamical systems with graph neural networks
Decomposing heterogeneous dynamical systems with graph neural networks
Cédric Allier
Magdalena C. Schneider
Michael Innerberger
Larissa Heinrich
J. Bogovic
S. Saalfeld
CML
AI4CE
46
0
0
27 Jul 2024
A Triumvirate of AI Driven Theoretical Discovery
A Triumvirate of AI Driven Theoretical Discovery
Yang-Hui He
AI4CE
48
4
0
30 May 2024
Automated Scientific Discovery: From Equation Discovery to Autonomous
  Discovery Systems
Automated Scientific Discovery: From Equation Discovery to Autonomous Discovery Systems
Stefan Kramer
Mattia Cerrato
S. Džeroski
R. King
31
10
0
03 May 2023
Priors for symbolic regression
Priors for symbolic regression
Deaglan J. Bartlett
Harry Desmond
Pedro G. Ferreira
42
5
0
13 Apr 2023
Deep symbolic regression for physics guided by units constraints: toward
  the automated discovery of physical laws
Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws
Wassim Tenachi
Rodrigo Ibata
F. Diakogiannis
AI4CE
13
71
0
06 Mar 2023
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
  from First Principles
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
AI4CE
36
22
0
13 Jan 2023
Interpretable Scientific Discovery with Symbolic Regression: A Review
Interpretable Scientific Discovery with Symbolic Regression: A Review
N. Makke
Sanjay Chawla
38
94
0
20 Nov 2022
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle
  Kinematics with Symbolic Regression
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle Kinematics with Symbolic Regression
Zhongtian Dong
K. Kong
Konstantin T. Matchev
Katia Matcheva
46
13
0
15 Nov 2022
The Cosmic Graph: Optimal Information Extraction from Large-Scale
  Structure using Catalogues
The Cosmic Graph: Optimal Information Extraction from Large-Scale Structure using Catalogues
T. Lucas Makinen
Tom Charnock
Pablo Lemos
Natalia Porqueres
A. Heavens
Benjamin Dan Wandelt
22
26
0
11 Jul 2022
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph
  Neural Networks
Towards Learning Self-Organized Criticality of Rydberg Atoms using Graph Neural Networks
Simon Ohler
Daniel Brady
Winfried Lotzsch
M. Fleischhauer
Johannes Otterbach
AI4CE
30
1
0
05 Jul 2022
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics
  with Machine Learning
SYMBA: Symbolic Computation of Squared Amplitudes in High Energy Physics with Machine Learning
Abdulhakim Alnuqaydan
S. Gleyzer
Harrison B. Prosper
28
14
0
17 Jun 2022
On scientific understanding with artificial intelligence
On scientific understanding with artificial intelligence
Mario Krenn
R. Pollice
S. Guo
Matteo Aldeghi
Alba Cervera-Lierta
...
Florian Hase
A. Jinich
AkshatKumar Nigam
Zhenpeng Yao
Alán Aspuru-Guzik
35
186
0
04 Apr 2022
A World-Self Model Towards Understanding Intelligence
A World-Self Model Towards Understanding Intelligence
Yutao Yue
32
2
0
25 Mar 2022
Machine Learning and Cosmology
Machine Learning and Cosmology
C. Dvorkin
S. Mishra-Sharma
Brian D. Nord
V. A. Villar
Camille Avestruz
...
A. Ćiprijanović
Andrew J. Connolly
L. Garrison
G. Narayan
F. Villaescusa-Navarro
AI4CE
29
12
0
15 Mar 2022
Learning Symbolic Physics with Graph Networks
Learning Symbolic Physics with Graph Networks
M. Cranmer
Rui Xu
Peter W. Battaglia
S. Ho
PINN
AI4CE
191
84
0
12 Sep 2019
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
283
1,401
0
01 Dec 2016
1