ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02096
  4. Cited By
To Impute or not to Impute? Missing Data in Treatment Effect Estimation

To Impute or not to Impute? Missing Data in Treatment Effect Estimation

4 February 2022
Jeroen Berrevoets
F. Imrie
T. Kyono
James Jordon
M. Schaar
ArXivPDFHTML

Papers citing "To Impute or not to Impute? Missing Data in Treatment Effect Estimation"

4 / 4 papers shown
Title
Combining Observational and Randomized Data for Estimating Heterogeneous
  Treatment Effects
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
44
29
0
25 Feb 2022
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms
Trent Kyono
Yao Zhang
Alexis Bellot
M. Schaar
CML
47
61
0
04 Nov 2021
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
223
719
0
12 May 2016
MissForest - nonparametric missing value imputation for mixed-type data
MissForest - nonparametric missing value imputation for mixed-type data
D. Stekhoven
Peter Buhlmann
157
4,214
0
04 May 2011
1