Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.01832
Cited By
v1
v2 (latest)
Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization
3 February 2022
Xiaojun Xu
Jacky Y. Zhang
Evelyn Ma
Danny Son
Oluwasanmi Koyejo
Yue Liu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization"
34 / 34 papers shown
Title
Improving Generalization of Universal Adversarial Perturbation via Dynamic Maximin Optimization
Yize Zhang
Yingzhe Xu
Junyu Shi
L. Zhang
Shengshan Hu
Minghui Li
Yanjun Zhang
AAML
137
2
0
17 Mar 2025
f-Domain-Adversarial Learning: Theory and Algorithms
David Acuna
Guojun Zhang
M. Law
Sanja Fidler
FedML
AI4CE
68
62
0
21 Jun 2021
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Zou
GAN
87
54
0
18 Jun 2021
k-Mixup Regularization for Deep Learning via Optimal Transport
Kristjan Greenewald
Anming Gu
Mikhail Yurochkin
Justin Solomon
Edward Chien
82
19
0
05 Jun 2021
TRS: Transferability Reduced Ensemble via Encouraging Gradient Diversity and Model Smoothness
Zhuolin Yang
Linyi Li
Xiaojun Xu
Shiliang Zuo
Qiang Chen
Benjamin I. P. Rubinstein
Pan Zhou
Ce Zhang
Yue Liu
AAML
118
55
0
01 Apr 2021
An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
100
36
0
25 Feb 2021
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
94
252
0
09 Oct 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
93
426
0
16 Jul 2020
Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability
Kaizhao Liang
Jacky Y. Zhang
Wei Ping
Zhuolin Yang
Oluwasanmi Koyejo
Yangqiu Song
AAML
106
26
0
25 Jun 2020
Controllable Orthogonalization in Training DNNs
Lei Huang
Li Liu
Fan Zhu
Diwen Wan
Zehuan Yuan
Bo Li
Ling Shao
75
44
0
02 Apr 2020
TSS: Transformation-Specific Smoothing for Robustness Certification
Linyi Li
Maurice Weber
Xiaojun Xu
Luka Rimanic
B. Kailkhura
Tao Xie
Ce Zhang
Yue Liu
AAML
100
57
0
27 Feb 2020
Robust Learning with Jacobian Regularization
Judy Hoffman
Daniel A. Roberts
Sho Yaida
OOD
AAML
64
169
0
07 Aug 2019
Further advantages of data augmentation on convolutional neural networks
Alex Hernández-García
Peter König
59
108
0
26 Jun 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
95
1,845
0
06 May 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Michael I. Jordan
Martin J. Wainwright
AAML
104
670
0
03 Apr 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
169
2,052
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
159
2,560
0
24 Jan 2019
Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation
Chaowei Xiao
Ruizhi Deng
Yue Liu
Feng Yu
M. Liu
Basel Alomair
AAML
50
99
0
11 Oct 2018
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
84
86
0
16 Aug 2018
Data augmentation instead of explicit regularization
Alex Hernández-García
Peter König
76
144
0
11 Jun 2018
AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks
Chun-Chen Tu
Pai-Shun Ting
Pin-Yu Chen
Sijia Liu
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Shin-Ming Cheng
MLAU
AAML
84
398
0
30 May 2018
A Kernel Theory of Modern Data Augmentation
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
110
193
0
16 Mar 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
Basel Alomair
Michael E. Houle
James Bailey
AAML
114
742
0
08 Jan 2018
The Effectiveness of Data Augmentation in Image Classification using Deep Learning
Luis Perez
Jason Wang
84
2,793
0
13 Dec 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
319
12,138
0
19 Jun 2017
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
Takeru Miyato
S. Maeda
Masanori Koyama
S. Ishii
GAN
153
2,739
0
13 Apr 2017
Dataset Augmentation in Feature Space
Terrance Devries
Graham W. Taylor
78
427
0
17 Feb 2017
Understanding data augmentation for classification: when to warp?
S. Wong
Adam Gatt
V. Stamatescu
Mark D Mcdonnell
80
906
0
28 Sep 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
282
8,587
0
16 Aug 2016
Optimal Transport for Domain Adaptation
Nicolas Courty
Rémi Flamary
D. Tuia
A. Rakotomamonjy
OT
OOD
155
1,125
0
02 Jul 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,129
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
289
14,968
1
21 Dec 2013
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
144
1,188
0
10 Jan 2013
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
303
801
0
19 Feb 2009
1