ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.01185
  4. Cited By
Heterogeneous manifolds for curvature-aware graph embedding

Heterogeneous manifolds for curvature-aware graph embedding

2 February 2022
Francesco Di Giovanni
Giulia Luise
M. Bronstein
ArXivPDFHTML

Papers citing "Heterogeneous manifolds for curvature-aware graph embedding"

19 / 19 papers shown
Title
Neural Spacetimes for DAG Representation Learning
Neural Spacetimes for DAG Representation Learning
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael Bronstein
CML
46
0
0
25 Aug 2024
Product Manifold Representations for Learning on Biological Pathways
Product Manifold Representations for Learning on Biological Pathways
Daniel McNeela
Frederic Sala
A. Gitter
GNN
69
2
0
27 Jan 2024
DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
  Alleviating Over-squashing
DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing
Li Sun
Zhenhao Huang
Hua Wu
Junda Ye
Hao Peng
Zhengtao Yu
Philip S. Yu
31
11
0
23 Jan 2024
Motif-aware Riemannian Graph Neural Network with Generative-Contrastive
  Learning
Motif-aware Riemannian Graph Neural Network with Generative-Contrastive Learning
Li Sun
Zhenhao Huang
Zixi Wang
Feiyang Wang
Hao Peng
Philip Yu
29
16
0
02 Jan 2024
Normed Spaces for Graph Embedding
Normed Spaces for Graph Embedding
Diaaeldin Taha
Wei-Ye Zhao
J. M. Riestenberg
Michael Strube
45
1
0
03 Dec 2023
Improving embedding of graphs with missing data by soft manifolds
Improving embedding of graphs with missing data by soft manifolds
Andrea Marinoni
Pietro Lio'
Alessandro Barp
Christian Jutten
M. Girolami
21
0
0
29 Nov 2023
Over-Squashing in Riemannian Graph Neural Networks
Over-Squashing in Riemannian Graph Neural Networks
Julia Balla
25
0
0
27 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
37
4
0
23 Oct 2023
Curve Your Attention: Mixed-Curvature Transformers for Graph
  Representation Learning
Curve Your Attention: Mixed-Curvature Transformers for Graph Representation Learning
Sungjun Cho
Seunghyuk Cho
Sungwoo Park
Hankook Lee
Ho Hin Lee
Moontae Lee
29
6
0
08 Sep 2023
Capacity Bounds for Hyperbolic Neural Network Representations of Latent
  Tree Structures
Capacity Bounds for Hyperbolic Neural Network Representations of Latent Tree Structures
Anastasis Kratsios
Rui Hong
Haitz Sáez de Ocáriz Borde
27
4
0
18 Aug 2023
Improving Heterogeneous Graph Learning with Weighted Mixed-Curvature
  Product Manifold
Improving Heterogeneous Graph Learning with Weighted Mixed-Curvature Product Manifold
Tuc Nguyen-Van
Dung D. Le
The-Anh Ta
38
1
0
10 Jul 2023
Contrastive Graph Clustering in Curvature Spaces
Contrastive Graph Clustering in Curvature Spaces
Li Sun
Feiyang Wang
Junda Ye
Hao Peng
Philip S. Yu
24
17
0
05 May 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of
  Width, Depth, and Topology
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio'
Michael M. Bronstein
38
112
0
06 Feb 2023
Latent Graph Inference using Product Manifolds
Latent Graph Inference using Product Manifolds
Haitz Sáez de Ocáriz Borde
Anees Kazi
Federico Barbero
Pietro Lio'
BDL
32
18
0
26 Nov 2022
Bringing motion taxonomies to continuous domains via GPLVM on hyperbolic
  manifolds
Bringing motion taxonomies to continuous domains via GPLVM on hyperbolic manifolds
Noémie Jaquier
Leonel Rozo
Miguel González-Duque
Viacheslav Borovitskiy
Tamim Asfour
43
7
0
04 Oct 2022
Small Transformers Compute Universal Metric Embeddings
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
56
11
0
14 Sep 2022
Tuning the Geometry of Graph Neural Networks
Tuning the Geometry of Graph Neural Networks
Sowon Jeong
Claire Donnat
AI4CE
45
1
0
12 Jul 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
1