Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.01185
Cited By
Heterogeneous manifolds for curvature-aware graph embedding
2 February 2022
Francesco Di Giovanni
Giulia Luise
M. Bronstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Heterogeneous manifolds for curvature-aware graph embedding"
19 / 19 papers shown
Title
Neural Spacetimes for DAG Representation Learning
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael Bronstein
CML
46
0
0
25 Aug 2024
Product Manifold Representations for Learning on Biological Pathways
Daniel McNeela
Frederic Sala
A. Gitter
GNN
69
2
0
27 Jan 2024
DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for Alleviating Over-squashing
Li Sun
Zhenhao Huang
Hua Wu
Junda Ye
Hao Peng
Zhengtao Yu
Philip S. Yu
31
11
0
23 Jan 2024
Motif-aware Riemannian Graph Neural Network with Generative-Contrastive Learning
Li Sun
Zhenhao Huang
Zixi Wang
Feiyang Wang
Hao Peng
Philip Yu
29
16
0
02 Jan 2024
Normed Spaces for Graph Embedding
Diaaeldin Taha
Wei-Ye Zhao
J. M. Riestenberg
Michael Strube
45
1
0
03 Dec 2023
Improving embedding of graphs with missing data by soft manifolds
Andrea Marinoni
Pietro Lio'
Alessandro Barp
Christian Jutten
M. Girolami
21
0
0
29 Nov 2023
Over-Squashing in Riemannian Graph Neural Networks
Julia Balla
25
0
0
27 Nov 2023
Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
37
4
0
23 Oct 2023
Curve Your Attention: Mixed-Curvature Transformers for Graph Representation Learning
Sungjun Cho
Seunghyuk Cho
Sungwoo Park
Hankook Lee
Ho Hin Lee
Moontae Lee
29
6
0
08 Sep 2023
Capacity Bounds for Hyperbolic Neural Network Representations of Latent Tree Structures
Anastasis Kratsios
Rui Hong
Haitz Sáez de Ocáriz Borde
27
4
0
18 Aug 2023
Improving Heterogeneous Graph Learning with Weighted Mixed-Curvature Product Manifold
Tuc Nguyen-Van
Dung D. Le
The-Anh Ta
38
1
0
10 Jul 2023
Contrastive Graph Clustering in Curvature Spaces
Li Sun
Feiyang Wang
Junda Ye
Hao Peng
Philip S. Yu
24
17
0
05 May 2023
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Francesco Di Giovanni
Lorenzo Giusti
Federico Barbero
Giulia Luise
Pietro Lio'
Michael M. Bronstein
38
112
0
06 Feb 2023
Latent Graph Inference using Product Manifolds
Haitz Sáez de Ocáriz Borde
Anees Kazi
Federico Barbero
Pietro Lio'
BDL
32
18
0
26 Nov 2022
Bringing motion taxonomies to continuous domains via GPLVM on hyperbolic manifolds
Noémie Jaquier
Leonel Rozo
Miguel González-Duque
Viacheslav Borovitskiy
Tamim Asfour
43
7
0
04 Oct 2022
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
56
11
0
14 Sep 2022
Tuning the Geometry of Graph Neural Networks
Sowon Jeong
Claire Donnat
AI4CE
45
1
0
12 Jul 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
250
3,236
0
24 Nov 2016
1