Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.00867
Cited By
Efficient Algorithms for Learning to Control Bandits with Unobserved Contexts
2 February 2022
Hongju Park
Mohamad Kazem Shirani Faradonbeh
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Efficient Algorithms for Learning to Control Bandits with Unobserved Contexts"
12 / 12 papers shown
Title
Analysis of Thompson Sampling for Partially Observable Contextual Multi-Armed Bandits
Yash J. Patel
Mohamad Kazem Shirani Faradonbeh
48
15
0
23 Oct 2021
Mirror Descent and the Information Ratio
Tor Lattimore
András Gyorgy
58
42
0
25 Sep 2020
Bandits with Partially Observable Confounded Data
Guy Tennenholtz
Uri Shalit
Shie Mannor
Yonathan Efroni
OffRL
48
24
0
11 Jun 2020
Greedy Algorithm almost Dominates in Smoothed Contextual Bandits
Manish Raghavan
Aleksandrs Slivkins
Jennifer Wortman Vaughan
Zhiwei Steven Wu
357
18
0
19 May 2020
On Applications of Bootstrap in Continuous Space Reinforcement Learning
Mohamad Kazem Shirani Faradonbeh
Ambuj Tewari
George Michailidis
37
12
0
14 Mar 2019
Input Perturbations for Adaptive Control and Learning
Mohamad Kazem Shirani Faradonbeh
Ambuj Tewari
George Michailidis
66
45
0
10 Nov 2018
Optimism-Based Adaptive Regulation of Linear-Quadratic Systems
Mohamad Kazem Shirani Faradonbeh
Ambuj Tewari
George Michailidis
78
56
0
20 Nov 2017
Learning Unknown Markov Decision Processes: A Thompson Sampling Approach
Ouyang Yi
Mukul Gagrani
A. Nayyar
R. Jain
51
128
0
14 Sep 2017
Context Attentive Bandits: Contextual Bandit with Restricted Context
Djallel Bouneffouf
Irina Rish
Guillermo Cecchi
Raphael Feraud
42
67
0
10 May 2017
Mostly Exploration-Free Algorithms for Contextual Bandits
Hamsa Bastani
Mohsen Bayati
Khashayar Khosravi
375
159
0
28 Apr 2017
Thompson Sampling for Contextual Bandits with Linear Payoffs
Shipra Agrawal
Navin Goyal
207
1,006
0
15 Sep 2012
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
E. Kaufmann
N. Korda
Rémi Munos
179
588
0
18 May 2012
1