Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.00858
Cited By
Hierarchical Shrinkage: improving the accuracy and interpretability of tree-based methods
2 February 2022
Abhineet Agarwal
Yan Shuo Tan
Omer Ronen
Chandan Singh
Bin Yu
Re-assign community
ArXiv (abs)
PDF
HTML
Github (1462★)
Papers citing
"Hierarchical Shrinkage: improving the accuracy and interpretability of tree-based methods"
5 / 5 papers shown
Title
A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds
Yan Shuo Tan
Abhineet Agarwal
Bin Yu
59
11
0
18 Oct 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
218
673
0
20 Mar 2021
PMLB v1.0: An open source dataset collection for benchmarking machine learning methods
Joseph D. Romano
Trang T. Le
William La Cava
John T. Gregg
Daniel J. Goldberg
Natasha L. Ray
Praneel Chakraborty
Daniel Himmelstein
Weixuan Fu
J. Moore
GP
43
74
0
30 Nov 2020
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
72
743
0
05 Nov 2015
ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R
Marvin N. Wright
A. Ziegler
272
2,788
0
18 Aug 2015
1