Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.00580
Cited By
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification
1 February 2022
Yuxin Wen
Jonas Geiping
Liam H. Fowl
Micah Goldblum
Tom Goldstein
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification"
15 / 15 papers shown
Title
ReCIT: Reconstructing Full Private Data from Gradient in Parameter-Efficient Fine-Tuning of Large Language Models
Jin Xie
Ruishi He
Songze Li
Xiaojun Jia
Shouling Ji
SILM
AAML
66
0
0
29 Apr 2025
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
X. Zhang
Ninghui Li
100
1
0
28 Jan 2025
Attribute Inference Attacks for Federated Regression Tasks
Francesco Diana
Othmane Marfoq
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
175
1
0
19 Nov 2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
55
3
0
24 May 2024
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
59
4
0
13 Feb 2024
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
38
13
0
27 Jul 2023
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General Losses
G. Buzaglo
Niv Haim
Gilad Yehudai
Gal Vardi
Yakir Oz
Yaniv Nikankin
Michal Irani
31
10
0
04 Jul 2023
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning
Joshua C. Zhao
A. Elkordy
Atul Sharma
Yahya H. Ezzeldin
A. Avestimehr
S. Bagchi
FedML
37
12
0
27 Mar 2023
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
12
22
0
06 Oct 2022
Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph
Yang Lu
Zhengxin Yu
N. Suri
FedML
24
14
0
01 Oct 2022
Cocktail Party Attack: Breaking Aggregation-Based Privacy in Federated Learning using Independent Component Analysis
Sanjay Kariyappa
Chuan Guo
Kiwan Maeng
Wenjie Xiong
G. E. Suh
Moinuddin K. Qureshi
Hsien-Hsin S. Lee
FedML
13
29
0
12 Sep 2022
On Privacy and Personalization in Cross-Silo Federated Learning
Ziyu Liu
Shengyuan Hu
Zhiwei Steven Wu
Virginia Smith
FedML
22
51
0
16 Jun 2022
Gradient Obfuscation Gives a False Sense of Security in Federated Learning
Kai Yue
Richeng Jin
Chau-Wai Wong
D. Baron
H. Dai
FedML
28
46
0
08 Jun 2022
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
36
106
0
31 Mar 2022
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
37
76
0
25 Feb 2021
1