Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.00449
Cited By
A Consistent and Efficient Evaluation Strategy for Attribution Methods
1 February 2022
Yao Rong
Tobias Leemann
V. Borisov
Gjergji Kasneci
Enkelejda Kasneci
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Consistent and Efficient Evaluation Strategy for Attribution Methods"
26 / 26 papers shown
Title
Probabilistic Stability Guarantees for Feature Attributions
Helen Jin
Anton Xue
Weiqiu You
Surbhi Goel
Eric Wong
32
0
0
18 Apr 2025
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
107
1
0
13 Mar 2025
Generalizable and Explainable Deep Learning for Medical Image Computing: An Overview
A. Chaddad
Yan Hu
Yihang Wu
Binbin Wen
R. Kateb
61
6
0
11 Mar 2025
Attention Mechanisms Don't Learn Additive Models: Rethinking Feature Importance for Transformers
Tobias Leemann
Alina Fastowski
Felix Pfeiffer
Gjergji Kasneci
69
5
0
10 Jan 2025
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
47
4
0
03 Jan 2025
F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI
Xu Zheng
Farhad Shirani
Zhuomin Chen
Chaohao Lin
Wei Cheng
Wenbo Guo
Dongsheng Luo
AAML
38
0
0
03 Oct 2024
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
38
1
0
22 Sep 2024
MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring
Eirini Cholopoulou
D. Iakovidis
AAML
33
0
0
20 Sep 2024
Counterfactuals As a Means for Evaluating Faithfulness of Attribution Methods in Autoregressive Language Models
Sepehr Kamahi
Yadollah Yaghoobzadeh
55
0
0
21 Aug 2024
On the Evaluation Consistency of Attribution-based Explanations
Jiarui Duan
Haoling Li
Haofei Zhang
Hao Jiang
Mengqi Xue
Li Sun
Mingli Song
Mingli Song
XAI
46
1
0
28 Jul 2024
Benchmarking the Attribution Quality of Vision Models
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
FAtt
39
3
0
16 Jul 2024
A Fresh Look at Sanity Checks for Saliency Maps
Anna Hedström
Leander Weber
Sebastian Lapuschkin
Marina M.-C. Höhne
FAtt
LRM
64
5
0
03 May 2024
RankingSHAP -- Listwise Feature Attribution Explanations for Ranking Models
Maria Heuss
Maarten de Rijke
Avishek Anand
184
1
0
24 Mar 2024
CAManim: Animating end-to-end network activation maps
Emily Kaczmarek
Olivier X. Miguel
Alexa C. Bowie
R. Ducharme
Alysha L. J. Dingwall-Harvey
S. Hawken
Christine M. Armour
Mark C. Walker
Kevin Dick
HAI
37
1
0
19 Dec 2023
CoRTX: Contrastive Framework for Real-time Explanation
Yu-Neng Chuang
Guanchu Wang
Fan Yang
Quan-Gen Zhou
Pushkar Tripathi
Xuanting Cai
Xia Hu
46
20
0
05 Mar 2023
Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
N. Jethani
A. Saporta
Rajesh Ranganath
FAtt
34
11
0
24 Feb 2023
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus
Anna Hedström
P. Bommer
Kristoffer K. Wickstrom
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
37
21
0
14 Feb 2023
On The Coherence of Quantitative Evaluation of Visual Explanations
Benjamin Vandersmissen
José Oramas
XAI
FAtt
36
3
0
14 Feb 2023
Relational Local Explanations
V. Borisov
Gjergji Kasneci
FAtt
22
0
0
23 Dec 2022
Explainability as statistical inference
Hugo Senetaire
Damien Garreau
J. Frellsen
Pierre-Alexandre Mattei
FAtt
26
4
0
06 Dec 2022
Sensing accident-prone features in urban scenes for proactive driving and accident prevention
Sumit Mishra
Praveenbalaji Rajendran
L. Vecchietti
Dongsoo Har
19
13
0
25 Feb 2022
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
49
650
0
05 Oct 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
33
20
0
26 Apr 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
88
69
0
02 Mar 2021
Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction
Darius Afchar
Romain Hennequin
FAtt
XAI
39
16
0
26 Aug 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,698
0
28 Feb 2017
1