Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.00395
Cited By
Is the Performance of My Deep Network Too Good to Be True? A Direct Approach to Estimating the Bayes Error in Binary Classification
1 February 2022
Takashi Ishida
Ikko Yamane
Nontawat Charoenphakdee
Gang Niu
Masashi Sugiyama
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Is the Performance of My Deep Network Too Good to Be True? A Direct Approach to Estimating the Bayes Error in Binary Classification"
4 / 4 papers shown
Title
Bounding Neyman-Pearson Region with
f
f
f
-Divergences
Andrew Mullhaupt
Cheng Peng
24
0
0
13 May 2025
Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels
Sangdoo Yun
Seong Joon Oh
Byeongho Heo
Dongyoon Han
Junsuk Choe
Sanghyuk Chun
414
143
0
13 Jan 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
266
4,532
0
23 Jan 2020
Classification from Pairwise Similarity and Unlabeled Data
Han Bao
Gang Niu
Masashi Sugiyama
173
88
0
12 Feb 2018
1