ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.13351
  4. Cited By
LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network
  Activation Functions

LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network Activation Functions

31 January 2022
Brandon Paulsen
Chao Wang
    AAML
ArXivPDFHTML

Papers citing "LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network Activation Functions"

8 / 8 papers shown
Title
Neural Network Verification with Branch-and-Bound for General Nonlinearities
Neural Network Verification with Branch-and-Bound for General Nonlinearities
Zhouxing Shi
Qirui Jin
Zico Kolter
Suman Jana
Cho-Jui Hsieh
Huan Zhang
48
11
0
31 May 2024
Towards Global Neural Network Abstractions with Locally-Exact
  Reconstruction
Towards Global Neural Network Abstractions with Locally-Exact Reconstruction
Edoardo Manino
I. Bessa
Lucas C. Cordeiro
21
1
0
21 Oct 2022
Abstraction and Refinement: Towards Scalable and Exact Verification of
  Neural Networks
Abstraction and Refinement: Towards Scalable and Exact Verification of Neural Networks
Jiaxiang Liu
Yunhan Xing
Xiaomu Shi
Fu Song
Zhiwu Xu
Zhong Ming
24
10
0
02 Jul 2022
SoK: Certified Robustness for Deep Neural Networks
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
33
128
0
09 Sep 2020
CNN-Cert: An Efficient Framework for Certifying Robustness of
  Convolutional Neural Networks
CNN-Cert: An Efficient Framework for Certifying Robustness of Convolutional Neural Networks
Akhilan Boopathy
Tsui-Wei Weng
Pin-Yu Chen
Sijia Liu
Luca Daniel
AAML
108
138
0
29 Nov 2018
Generating Natural Language Adversarial Examples
Generating Natural Language Adversarial Examples
M. Alzantot
Yash Sharma
Ahmed Elgohary
Bo-Jhang Ho
Mani B. Srivastava
Kai-Wei Chang
AAML
256
915
0
21 Apr 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
249
1,838
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
1