ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.13096
  4. Cited By
SPDY: Accurate Pruning with Speedup Guarantees

SPDY: Accurate Pruning with Speedup Guarantees

31 January 2022
Elias Frantar
Dan Alistarh
ArXivPDFHTML

Papers citing "SPDY: Accurate Pruning with Speedup Guarantees"

8 / 8 papers shown
Title
REDS: Resource-Efficient Deep Subnetworks for Dynamic Resource
  Constraints
REDS: Resource-Efficient Deep Subnetworks for Dynamic Resource Constraints
Francesco Corti
Balz Maag
Joachim Schauer
U. Pferschy
O. Saukh
39
2
0
22 Nov 2023
A Simple and Effective Pruning Approach for Large Language Models
A Simple and Effective Pruning Approach for Large Language Models
Mingjie Sun
Zhuang Liu
Anna Bair
J. Zico Kolter
87
361
0
20 Jun 2023
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and
  Accurate Deep Learning
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning
Mohammadreza Alimohammadi
I. Markov
Elias Frantar
Dan Alistarh
35
5
0
31 Oct 2022
Optimal Brain Compression: A Framework for Accurate Post-Training
  Quantization and Pruning
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning
Elias Frantar
Sidak Pal Singh
Dan Alistarh
MQ
28
218
0
24 Aug 2022
Powerpropagation: A sparsity inducing weight reparameterisation
Powerpropagation: A sparsity inducing weight reparameterisation
Jonathan Richard Schwarz
Siddhant M. Jayakumar
Razvan Pascanu
P. Latham
Yee Whye Teh
98
54
0
01 Oct 2021
Accelerated Sparse Neural Training: A Provable and Efficient Method to
  Find N:M Transposable Masks
Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks
Itay Hubara
Brian Chmiel
Moshe Island
Ron Banner
S. Naor
Daniel Soudry
59
111
0
16 Feb 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
147
685
0
31 Jan 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,599
0
17 Apr 2017
1