Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.12872
Cited By
Discovering Invariant Rationales for Graph Neural Networks
30 January 2022
Yingmin Wu
Xiang Wang
An Zhang
Xiangnan He
Tat-Seng Chua
OOD
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Discovering Invariant Rationales for Graph Neural Networks"
49 / 49 papers shown
Title
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks
Han Zhang
Yan Wang
Guanfeng Liu
Pengfei Ding
Huaxiong Wang
Kwok-Yan Lam
24
0
0
20 May 2025
Adversarial Cooperative Rationalization: The Risk of Spurious Correlations in Even Clean Datasets
Wen Liu
Zhongyu Niu
Lang Gao
Zhiying Deng
Jun Wang
Haobo Wang
Ruixuan Li
333
1
0
04 May 2025
Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Xuexin Chen
Ruichu Cai
Zhengting Huang
Zijian Li
Jie Zheng
Min Wu
57
0
0
08 Mar 2025
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
Jiaqi Wang
Yuhang Zhou
Zhixiong Zhang
Qiguang Chen
Yongqiang Chen
James Cheng
OODD
101
1
0
18 Feb 2025
Enhancing Distribution and Label Consistency for Graph Out-of-Distribution Generalization
Song Wang
Xiaodong Yang
Rashidul Islam
Huiyuan Chen
Minghua Xu
Jundong Li
Yiwei Cai
OODD
130
2
0
07 Jan 2025
SSL Framework for Causal Inconsistency between Structures and Representations
Hang Chen
Xinyu Yang
Keqing Du
Wenya Wang
66
2
0
03 Jan 2025
Causal-aware Graph Neural Architecture Search under Distribution Shifts
Peiwen Li
Xin Wang
Zeyang Zhang
Yi Qin
Ziwei Zhang
Jialong Wang
Yang Li
Wenwu Zhu
CML
OOD
80
4
0
31 Dec 2024
Quantum Rationale-Aware Graph Contrastive Learning for Jet Discrimination
Md Abrar Jahin
Md. Akmol Masud
M. F. Mridha
Nilanjan Dey
Zeyar Aung
70
0
0
03 Nov 2024
A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation
Kexin Zhang
Shuhan Liu
Song Wang
Weili Shi
Chen Chen
Pan Li
Sheng Li
Jundong Li
Kaize Ding
OOD
81
3
0
25 Oct 2024
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Jinluan Yang
Zhengyu Chen
Teng Xiao
Wenqiao Zhang
Yong Lin
Kun Kuang
67
2
0
18 Aug 2024
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
64
2
0
03 Aug 2024
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
49
67
0
28 Oct 2021
Causal Attention for Unbiased Visual Recognition
Tan Wang
Chan Zhou
Qianru Sun
Hanwang Zhang
OOD
CML
59
111
0
19 Aug 2021
OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Hongyu Ren
Maho Nakata
Yuxiao Dong
J. Leskovec
AI4CE
39
403
0
17 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
67
110
0
08 Mar 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
44
383
0
09 Feb 2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
240
127
0
04 Jan 2021
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
108
546
0
09 Nov 2020
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
48
79
0
30 Oct 2020
Environment Inference for Invariant Learning
Elliot Creager
J. Jacobsen
R. Zemel
OOD
33
376
0
14 Oct 2020
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
35
307
0
12 Oct 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
78
428
0
16 Jun 2020
Risk Variance Penalization
Chuanlong Xie
Haotian Ye
Fei Chen
Yue Liu
Rui Sun
Zhenguo Li
83
33
0
13 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
145
2,687
0
02 May 2020
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
224
204
0
22 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
235
929
0
02 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
277
921
0
02 Mar 2020
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
33
1,217
0
20 Nov 2019
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations
Ekagra Ranjan
Soumya Sanyal
Partha P. Talukdar
GNN
56
330
0
18 Nov 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
135
2,190
0
05 Jul 2019
RUBi: Reducing Unimodal Biases in Visual Question Answering
Rémi Cadène
Corentin Dancette
H. Ben-younes
Matthieu Cord
Devi Parikh
CML
55
373
0
24 Jun 2019
On the equivalence between graph isomorphism testing and function approximation with GNNs
Zhengdao Chen
Soledad Villar
Lei Chen
Joan Bruna
48
278
0
29 May 2019
Provably Powerful Graph Networks
Haggai Maron
Heli Ben-Hamu
Hadar Serviansky
Y. Lipman
46
575
0
27 May 2019
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CE
SSL
SSeg
GNN
52
1,073
0
11 May 2019
Understanding Attention and Generalization in Graph Neural Networks
Boris Knyazev
Graham W. Taylor
Mohamed R. Amer
GNN
47
338
0
08 May 2019
Self-Attention Graph Pooling
Junhyun Lee
Inyeop Lee
Jaewoo Kang
GNN
69
1,110
0
17 Apr 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
94
1,300
0
10 Mar 2019
Graph Neural Networks with convolutional ARMA filters
F. Bianchi
Daniele Grattarola
L. Livi
Cesare Alippi
GNN
42
389
0
05 Jan 2019
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
681
93,936
0
11 Oct 2018
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
114
1,625
0
04 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
111
7,554
0
01 Oct 2018
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
237
19,902
0
30 Oct 2017
A causal framework for explaining the predictions of black-box sequence-to-sequence models
David Alvarez-Melis
Tommi Jaakkola
CML
291
204
0
06 Jul 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
268
129,831
0
12 Jun 2017
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
291
15,066
0
07 Jun 2017
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
283
1,808
0
02 Mar 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
346
28,795
0
09 Sep 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
354
149,474
0
22 Dec 2014
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
114
12,384
0
24 Jun 2012
1