Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.12843
Cited By
Graph Representation Learning via Aggregation Enhancement
30 January 2022
Maxim Fishman
Chaim Baskin
Evgenii Zheltonozhskii
Almog David
Ron Banner
A. Mendelson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Graph Representation Learning via Aggregation Enhancement"
17 / 17 papers shown
Title
How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision
Dongkwan Kim
Alice Oh
SSL
GNN
73
258
0
11 Apr 2022
Unsupervised Network Embedding Beyond Homophily
Zhiqiang Zhong
Guadalupe Gonzalez
Daniele Grattarola
Jun Pang
OODD
GNN
51
6
0
21 Mar 2022
Understanding over-squashing and bottlenecks on graphs via curvature
Jake Topping
Francesco Di Giovanni
B. Chamberlain
Xiaowen Dong
M. Bronstein
75
437
0
29 Nov 2021
Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming
Yizhen Zheng
Ming Jin
Shirui Pan
Yuan-Fang Li
Hao Peng
Ming Li
Zhao‐Rui Li
SSL
49
24
0
20 Nov 2021
Self-supervised Graph-level Representation Learning with Local and Global Structure
Minghao Xu
Hang Wang
Bingbing Ni
Hongyu Guo
Jian Tang
SSL
22
205
0
08 Jun 2021
Node Embedding using Mutual Information and Self-Supervision based Bi-level Aggregation
Kashob Kumar Roy
Amit Roy
A. Rahman
M. A. Amin
A. Ali
SSL
69
10
0
27 Apr 2021
Graph Self-Supervised Learning: A Survey
Yixin Liu
Ming Jin
Shirui Pan
Chuan Zhou
Yu Zheng
Feng Xia
Philip S. Yu
SSL
55
551
0
27 Feb 2021
Pre-Training on Dynamic Graph Neural Networks
Ke-Jia Chen
Jiajun Zhang
Linpu Jiang
Yunyun Wang
Yuxuan Dai
AI4CE
26
15
0
24 Feb 2021
HDMI: High-order Deep Multiplex Infomax
Baoyu Jing
Chanyoung Park
Hanghang Tong
104
165
0
15 Feb 2021
Iterative Graph Self-Distillation
Hanlin Zhang
Shuai Lin
Weiyang Liu
Pan Zhou
Jian Tang
Xiaodan Liang
Eric Xing
SSL
67
33
0
23 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
105
802
0
16 Jul 2020
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
65
675
0
09 Jun 2020
Open Graph Benchmark: Datasets for Machine Learning on Graphs
Weihua Hu
Matthias Fey
Marinka Zitnik
Yuxiao Dong
Hongyu Ren
Bowen Liu
Michele Catasta
J. Leskovec
145
2,687
0
02 May 2020
Supervised Learning on Relational Databases with Graph Neural Networks
Milan Cvitkovic
33
42
0
06 Feb 2020
MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding
Xinyu Fu
Jiani Zhang
Ziqiao Meng
Irwin King
62
858
0
05 Feb 2020
Pre-Training Graph Neural Networks for Generic Structural Feature Extraction
Ziniu Hu
Changjun Fan
Ting-Li Chen
Kai-Wei Chang
Yizhou Sun
42
43
0
31 May 2019
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
114
1,625
0
04 Oct 2018
1