ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.12354
  4. Cited By
Discovering Nonlinear PDEs from Scarce Data with Physics-encoded
  Learning

Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning

28 January 2022
Chengping Rao
Pu Ren
Yang Liu
Hao-Lun Sun
    AI4CE
ArXivPDFHTML

Papers citing "Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning"

21 / 21 papers shown
Title
PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
Han Wan
Qi Wang
Hao Sun
Hao Sun
AI4CE
48
0
0
13 Mar 2025
MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation
Qi Wang
Yuan Mi
H. Wang
Yi Zhang
Ruizhi Chengze
Hongsheng Liu
J. Wen
Hao Sun
AI4CE
41
0
0
28 Jan 2025
P$^2$C$^2$Net: PDE-Preserved Coarse Correction Network for efficient
  prediction of spatiotemporal dynamics
P2^22C2^22Net: PDE-Preserved Coarse Correction Network for efficient prediction of spatiotemporal dynamics
Qi Wang
Pu Ren
Hao Zhou
Xin-Yang Liu
Z. Deng
...
Zidong Wang
Jian-Xun Wang
Ji-Rong_Wen
Hao Sun
Yang Liu
56
5
0
29 Oct 2024
PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
Bocheng Zeng
Qi Wang
M. Yan
Y. Liu
Ruizhi Chengze
Yi Zhang
Hongsheng Liu
Zidong Wang
Hao Sun
AI4CE
37
3
0
02 Oct 2024
Vision-based Discovery of Nonlinear Dynamics for 3D Moving Target
Vision-based Discovery of Nonlinear Dynamics for 3D Moving Target
Zi-Rui Zhang
Yang Liu
Hao-Lun Sun
21
0
0
27 Apr 2024
Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
  and Levels-of-Experts
Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning and Levels-of-Experts
Kun Wang
Hao Wu
Guibin Zhang
Junfeng Fang
Yuxuan Liang
Yuankai Wu
Roger Zimmermann
Yang Wang
19
8
0
06 Feb 2024
Discovering stochastic partial differential equations from limited data
  using variational Bayes inference
Discovering stochastic partial differential equations from limited data using variational Bayes inference
Yogesh Chandrakant Mathpati
Tapas Tripura
R. Nayek
S. Chakraborty
DiffM
24
6
0
28 Jun 2023
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
  Scientific Computing
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
48
0
14 Nov 2022
SeismicNet: Physics-informed neural networks for seismic wave modeling
  in semi-infinite domain
SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain
Pu Ren
Chengping Rao
Su Chen
Jian-Xun Wang
Hao-Lun Sun
Yang Liu
39
41
0
25 Oct 2022
Physics-informed Deep Super-resolution for Spatiotemporal Data
Physics-informed Deep Super-resolution for Spatiotemporal Data
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao-Lun Sun
24
13
0
02 Aug 2022
D-CIPHER: Discovery of Closed-form Partial Differential Equations
D-CIPHER: Discovery of Closed-form Partial Differential Equations
Krzysztof Kacprzyk
Zhaozhi Qian
M. Schaar
AI4CE
19
1
0
21 Jun 2022
CoNSoLe: Convex Neural Symbolic Learning
CoNSoLe: Convex Neural Symbolic Learning
Haoran Li
Yang Weng
Hanghang Tong
16
9
0
01 Jun 2022
Learning black- and gray-box chemotactic PDEs/closures from agent based
  Monte Carlo simulation data
Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data
Seungjoon Lee
Y. M. Psarellis
Constantinos Siettos
Ioannis G. Kevrekidis
AI4CE
16
27
0
26 May 2022
Integration of knowledge and data in machine learning
Integration of knowledge and data in machine learning
Yuntian Chen
Dongxiao Zhang
PINN
28
31
0
15 Feb 2022
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
37
64
0
02 Jul 2021
Encoding physics to learn reaction-diffusion processes
Encoding physics to learn reaction-diffusion processes
Chengping Rao
Pu Ren
Qi Wang
O. Buyukozturk
Haoqin Sun
Yang Liu
PINN
AI4CE
DiffM
25
78
0
09 Jun 2021
Physics-Guided Discovery of Highly Nonlinear Parametric Partial
  Differential Equations
Physics-Guided Discovery of Highly Nonlinear Parametric Partial Differential Equations
Yingtao Luo
Qiang Liu
Yuntian Chen
Wenbo Hu
Tian Tian
Jun Zhu
DiffM
45
4
0
02 Jun 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,282
0
18 Oct 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
182
141
0
01 May 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised
  Video Prediction
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
86
288
0
03 Mar 2020
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
238
3,236
0
24 Nov 2016
1