Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.11354
Cited By
v1
v2 (latest)
Automatically adapting the number of state particles in SMC
2
^2
2
27 January 2022
Imke Botha
Robert Kohn
Leah F. South
Christopher C. Drovandi
Re-assign community
ArXiv (abs)
PDF
HTML
Github (1★)
Papers citing
"Automatically adapting the number of state particles in SMC$^2$"
9 / 9 papers shown
Title
Accelerating sequential Monte Carlo with surrogate likelihoods
Joshua J. Bon
Anthony Lee
Christopher C. Drovandi
66
19
0
08 Sep 2020
Robustly estimating the marginal likelihood for cognitive models via importance sampling
Minh-Ngoc Tran
Marcel Scharth
David Gunawan
Robert Kohn
Scott D. Brown
Guy E. Hawkins
32
15
0
14 Jun 2019
Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter
Christopher C. Drovandi
R. Everitt
Andrew Golightly
D. Prangle
81
14
0
05 Jun 2019
Unbiased and Consistent Nested Sampling via Sequential Monte Carlo
R. Salomone
Leah F. South
A. M. Johansen
Christopher C. Drovandi
Dirk P. Kroese
70
34
0
10 May 2018
Adapting the Number of Particles in Sequential Monte Carlo Methods through an Online Scheme for Convergence Assessment
Victor Elvira
Joaquín Míguez
Petar M. Djurić
63
71
0
16 Sep 2015
On the efficiency of pseudo-marginal random walk Metropolis algorithms
Chris Sherlock
Alexandre Hoang Thiery
Gareth O. Roberts
Jeffrey S. Rosenthal
123
191
0
27 Sep 2013
Nested particle filters for online parameter estimation in discrete-time state-space Markov models
Dan Crisan
Joaquín Míguez
105
95
0
08 Aug 2013
SMC^2: an efficient algorithm for sequential analysis of state-space models
Nicolas Chopin
Pierre E. Jacob
O. Papaspiliopoulos
103
357
0
07 Jan 2011
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
194
895
0
31 Mar 2009
1