Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.10747
Cited By
Learning Multiple Probabilistic Degradation Generators for Unsupervised Real World Image Super Resolution
26 January 2022
Sangyun Lee
Sewoong Ahn
Kwangjin Yoon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Multiple Probabilistic Degradation Generators for Unsupervised Real World Image Super Resolution"
8 / 8 papers shown
Title
Infrared Image Super-Resolution: Systematic Review, and Future Trends
Y. Huang
Tomo Miyazaki
Xiao-Fang Liu
S. Omachi
SupR
96
10
0
21 Feb 2025
Infrared Image Super-Resolution via GAN
Y. Huang
S. Omachi
GAN
29
0
0
01 Dec 2023
Learning Many-to-Many Mapping for Unpaired Real-World Image Super-resolution and Downscaling
Wanjie Sun
Zhenzhong Chen
SupR
33
0
0
08 Oct 2023
Rethinking Degradation: Radiograph Super-Resolution via AID-SRGAN
Y. Huang
Qingzhong Wang
S. Omachi
OOD
MedIm
25
10
0
05 Aug 2022
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
Andreas Lugmayr
Martin Danelljan
Radu Timofte
Namhyuk Ahn
Dongwoon Bai
...
Tongtong Zhao
Yuanbo Zhou
Haijie Zhuo
Ziyao Zong
Xueyi Zou
SupR
85
170
0
05 May 2020
Unsupervised Learning for Real-World Super-Resolution
Andreas Lugmayr
Martin Danelljan
Radu Timofte
SSL
SupR
137
167
0
20 Sep 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
282
10,354
0
12 Dec 2018
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
195
5,176
0
16 Sep 2016
1