ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.10664
  4. Cited By
Do Neural Networks for Segmentation Understand Insideness?

Do Neural Networks for Segmentation Understand Insideness?

25 January 2022
Kimberly M Villalobos
Vilim Štih
Amineh Ahmadinejad
Shobhita Sundaram
Jamell Dozier
Andrew Francl
Frederico Azevedo
Tomotake Sasaki
Xavier Boix
ArXivPDFHTML

Papers citing "Do Neural Networks for Segmentation Understand Insideness?"

8 / 8 papers shown
Title
Disentangling neural mechanisms for perceptual grouping
Disentangling neural mechanisms for perceptual grouping
Junkyung Kim
Drew Linsley
Kalpit C. Thakkar
Thomas Serre
OCL
60
55
0
04 Jun 2019
Deep Extreme Cut: From Extreme Points to Object Segmentation
Deep Extreme Cut: From Extreme Points to Object Segmentation
Kevis-Kokitsi Maninis
Sergi Caelles
Jordi Pont-Tuset
Luc Van Gool
60
418
0
24 Nov 2017
Fully Convolutional Instance-aware Semantic Segmentation
Fully Convolutional Instance-aware Semantic Segmentation
Yi Li
Haozhi Qi
Jifeng Dai
Xiangyang Ji
Yichen Wei
ISeg
SSeg
70
1,004
0
23 Nov 2016
Memory-Efficient Backpropagation Through Time
Memory-Efficient Backpropagation Through Time
A. Gruslys
Rémi Munos
Ivo Danihelka
Marc Lanctot
Alex Graves
49
228
0
10 Jun 2016
ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation
ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation
Francesco Visin
Marco Ciccone
Adriana Romero
Kyle Kastner
Kyunghyun Cho
Yoshua Bengio
Matteo Matteucci
Aaron Courville
VLM
SSeg
38
251
0
22 Nov 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
778
15,718
0
02 Nov 2015
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
471
7,952
0
13 Jun 2015
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
327
15,825
0
12 Nov 2013
1