ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09113
  4. Cited By
Predicting Physics in Mesh-reduced Space with Temporal Attention

Predicting Physics in Mesh-reduced Space with Temporal Attention

22 January 2022
Xu Han
Han Gao
Tobias Pfaff
Jian-Xun Wang
Liping Liu
    AI4CE
ArXivPDFHTML

Papers citing "Predicting Physics in Mesh-reduced Space with Temporal Attention"

29 / 29 papers shown
Title
PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
Bocheng Zeng
Qi Wang
Ming Yan
Yang Liu
Ruizhi Chengze
Yi Zhang
Hongsheng Liu
Zidong Wang
Hao Sun
AI4CE
183
4
0
02 Oct 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
117
2
0
04 Jul 2024
Conditionally Parameterized, Discretization-Aware Neural Networks for
  Mesh-Based Modeling of Physical Systems
Conditionally Parameterized, Discretization-Aware Neural Networks for Mesh-Based Modeling of Physical Systems
Jiayang Xu
Aniruddhe Pradhan
Karthikeyan Duraisamy
AI4CE
41
29
0
15 Sep 2021
Order Matters: Probabilistic Modeling of Node Sequence for Graph
  Generation
Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation
Xiaohui Chen
Xu Han
Jiajing Hu
Francisco J. R. Ruiz
Liping Liu
BDL
38
35
0
11 Jun 2021
Machine learning accelerated computational fluid dynamics
Machine learning accelerated computational fluid dynamics
Dmitrii Kochkov
Jamie A. Smith
Ayya Alieva
Qing Wang
M. Brenner
Stephan Hoyer
AI4CE
110
865
0
28 Jan 2021
POD-DL-ROM: enhancing deep learning-based reduced order models for
  nonlinear parametrized PDEs by proper orthogonal decomposition
POD-DL-ROM: enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition
S. Fresca
Andrea Manzoni
AI4CE
58
214
0
28 Jan 2021
LieTransformer: Equivariant self-attention for Lie Groups
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
92
111
0
20 Dec 2020
Learning Mesh-Based Simulation with Graph Networks
Learning Mesh-Based Simulation with Graph Networks
Tobias Pfaff
Meire Fortunato
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
AI4CE
79
786
0
07 Oct 2020
Transformers for Modeling Physical Systems
Transformers for Modeling Physical Systems
N. Geneva
N. Zabaras
AI4CE
39
143
0
04 Oct 2020
Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady
  Flows
Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows
Hamidreza Eivazi
H. Veisi
M. H. Naderi
V. Esfahanian
AI4CE
56
172
0
02 Jul 2020
Solver-in-the-Loop: Learning from Differentiable Physics to Interact
  with Iterative PDE-Solvers
Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers
Kiwon Um
R. Brand
Yun Fei
Fei
Philipp Holl
N. Thürey
AI4CE
52
270
0
30 Jun 2020
Equivariant flow-based sampling for lattice gauge theory
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
45
175
0
13 Mar 2020
Learning to Simulate Complex Physics with Graph Networks
Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
PINN
AI4CE
133
1,089
0
21 Feb 2020
Multi-level Convolutional Autoencoder Networks for Parametric Prediction
  of Spatio-temporal Dynamics
Multi-level Convolutional Autoencoder Networks for Parametric Prediction of Spatio-temporal Dynamics
Jiayang Xu
Karthik Duraisamy
AI4CE
47
142
0
23 Dec 2019
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Rui Wang
K. Kashinath
M. Mustafa
A. Albert
Rose Yu
PINN
AI4CE
39
365
0
20 Nov 2019
Graph U-Nets
Graph U-Nets
Hongyang Gao
Shuiwang Ji
AI4CE
SSL
SSeg
GNN
125
1,086
0
11 May 2019
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
46
218
0
26 Apr 2019
Graph Element Networks: adaptive, structured computation and memory
Graph Element Networks: adaptive, structured computation and memory
Ferran Alet
Adarsh K. Jeewajee
Maria Bauzá
Alberto Rodriguez
Tomas Lozano-Perez
L. Kaelbling
AI4CE
GNN
53
75
0
18 Apr 2019
Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of
  Airfoil Flows
Deep Learning Methods for Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows
Nils Thuerey
Konstantin Weissenow
L. Prantl
Xiangyu Y. Hu
AI4CE
80
385
0
18 Oct 2018
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable
  Objects, and Fluids
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids
Yunzhu Li
Jiajun Wu
Russ Tedrake
J. Tenenbaum
Antonio Torralba
PINN
AI4CE
72
397
0
03 Oct 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
289
2,146
0
22 Jun 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
406
5,099
0
19 Jun 2018
Graph networks as learnable physics engines for inference and control
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNN
AI4CE
PINN
OCL
199
599
0
04 Jun 2018
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long
  Short-Term Memory Networks
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks
Pantelis R. Vlachas
Wonmin Byeon
Z. Y. Wan
T. Sapsis
Petros Koumoutsakos
AI4TS
55
473
0
21 Feb 2018
Image Transformer
Image Transformer
Niki Parmar
Ashish Vaswani
Jakob Uszkoreit
Lukasz Kaiser
Noam M. Shazeer
Alexander Ku
Dustin Tran
ViT
128
1,679
0
15 Feb 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
71
1,250
0
27 Dec 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
687
131,526
0
12 Jun 2017
Liquid Splash Modeling with Neural Networks
Liquid Splash Modeling with Neural Networks
Kiwon Um
Xiangyu Y. Hu
N. Thürey
60
88
0
14 Apr 2017
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
551
7,989
0
13 Jun 2015
1