ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09051
  4. Cited By
On the Robustness of Sparse Counterfactual Explanations to Adverse
  Perturbations

On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations

22 January 2022
M. Virgolin
Saverio Fracaros
    CML
ArXivPDFHTML

Papers citing "On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations"

36 / 36 papers shown
Title
Understanding Fixed Predictions via Confined Regions
Understanding Fixed Predictions via Confined Regions
Connor Lawless
Tsui-Wei Weng
Berk Ustun
Madeleine Udell
70
0
0
22 Feb 2025
Attribution-based Explanations that Provide Recourse Cannot be Robust
Attribution-based Explanations that Provide Recourse Cannot be Robust
H. Fokkema
R. D. Heide
T. Erven
FAtt
95
19
0
31 May 2022
On the Adversarial Robustness of Causal Algorithmic Recourse
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
60
63
0
21 Dec 2021
Retiring Adult: New Datasets for Fair Machine Learning
Retiring Adult: New Datasets for Fair Machine Learning
Frances Ding
Moritz Hardt
John Miller
Ludwig Schmidt
146
445
0
10 Aug 2021
Exploring Counterfactual Explanations Through the Lens of Adversarial
  Examples: A Theoretical and Empirical Analysis
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis
Martin Pawelczyk
Chirag Agarwal
Shalmali Joshi
Sohini Upadhyay
Himabindu Lakkaraju
AAML
47
53
0
18 Jun 2021
Counterfactual Explanations Can Be Manipulated
Counterfactual Explanations Can Be Manipulated
Dylan Slack
Sophie Hilgard
Himabindu Lakkaraju
Sameer Singh
53
136
0
04 Jun 2021
Model Learning with Personalized Interpretability Estimation (ML-PIE)
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
46
31
0
13 Apr 2021
Evaluating Robustness of Counterfactual Explanations
Evaluating Robustness of Counterfactual Explanations
André Artelt
Valerie Vaquet
Riza Velioglu
Fabian Hinder
Johannes Brinkrolf
M. Schilling
Barbara Hammer
69
46
0
03 Mar 2021
Distances with mixed type variables some modified Gower's coefficients
Distances with mixed type variables some modified Gower's coefficients
M. DÓrazio
29
14
0
07 Jan 2021
Algorithmic Recourse in the Wild: Understanding the Impact of Data and
  Model Shifts
Algorithmic Recourse in the Wild: Understanding the Impact of Data and Model Shifts
Kaivalya Rawal
Ece Kamar
Himabindu Lakkaraju
35
41
0
22 Dec 2020
A Series of Unfortunate Counterfactual Events: the Role of Time in
  Counterfactual Explanations
A Series of Unfortunate Counterfactual Events: the Role of Time in Counterfactual Explanations
Andrea Ferrario
M. Loi
47
5
0
09 Oct 2020
The Intriguing Relation Between Counterfactual Explanations and
  Adversarial Examples
The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples
Timo Freiesleben
GAN
57
63
0
11 Sep 2020
On Counterfactual Explanations under Predictive Multiplicity
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
102
85
0
23 Jun 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
61
14,757
0
18 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
94
179
0
11 Jun 2020
Good Counterfactuals and Where to Find Them: A Case-Based Technique for
  Generating Counterfactuals for Explainable AI (XAI)
Good Counterfactuals and Where to Find Them: A Case-Based Technique for Generating Counterfactuals for Explainable AI (XAI)
Mark T. Keane
Barry Smyth
CML
62
146
0
26 May 2020
Genetic programming approaches to learning fair classifiers
Genetic programming approaches to learning fair classifiers
William La Cava
J. Moore
FaML
32
19
0
28 Apr 2020
Multi-Objective Counterfactual Explanations
Multi-Objective Counterfactual Explanations
Susanne Dandl
Christoph Molnar
Martin Binder
B. Bischl
52
252
0
23 Apr 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
44
340
0
14 Feb 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
105
925
0
04 Dec 2019
Imperceptible Adversarial Attacks on Tabular Data
Imperceptible Adversarial Attacks on Tabular Data
Vincent Ballet
X. Renard
Jonathan Aigrain
Thibault Laugel
P. Frossard
Marcin Detyniecki
50
72
0
08 Nov 2019
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual
  Explanations
The Dangers of Post-hoc Interpretability: Unjustified Counterfactual Explanations
Thibault Laugel
Marie-Jeanne Lesot
Christophe Marsala
X. Renard
Marcin Detyniecki
40
196
0
22 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
47
380
0
03 Jul 2019
Artificial Intelligence: the global landscape of ethics guidelines
Artificial Intelligence: the global landscape of ethics guidelines
Anna Jobin
M. Ienca
E. Vayena
62
1,607
0
24 Jun 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual
  Explanations
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
100
1,005
0
19 May 2019
Reconciling modern machine learning practice and the bias-variance
  trade-off
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
174
1,628
0
28 Dec 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
177
1,172
0
27 Jun 2018
Local Rule-Based Explanations of Black Box Decision Systems
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
116
436
0
28 May 2018
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
91
587
0
21 Feb 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic
  Corrections
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
88
63
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
83
3,922
0
06 Feb 2018
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup
  Fairness
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
109
775
0
14 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated
  Decisions and the GDPR
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
81
2,332
0
01 Nov 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
552
21,613
0
22 May 2017
European Union regulations on algorithmic decision-making and a "right
  to explanation"
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
58
1,888
0
28 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
587
16,828
0
16 Feb 2016
1