ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08862
  4. Cited By
Stochastic normalizing flows as non-equilibrium transformations

Stochastic normalizing flows as non-equilibrium transformations

21 January 2022
M. Caselle
E. Cellini
A. Nada
M. Panero
ArXivPDFHTML

Papers citing "Stochastic normalizing flows as non-equilibrium transformations"

15 / 15 papers shown
Title
NeuMC -- a package for neural sampling for lattice field theories
Piotr Bialas
P. Korcyl
T. Stebel
Dawid Zapolski
39
0
0
14 Mar 2025
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
64
1
0
11 Mar 2025
Physics-Conditioned Diffusion Models for Lattice Gauge Theory
Qianteng Zhu
Gert Aarts
Wei Wang
K. Zhou
Lei Wang
55
1
0
08 Feb 2025
Simulating the Hubbard Model with Equivariant Normalizing Flows
Simulating the Hubbard Model with Equivariant Normalizing Flows
Dominic Schuh
Janik Kreit
Evan Berkowitz
L. Funcke
Thomas Luu
K. Nicoli
Marcel Rodekamp
36
3
0
13 Jan 2025
On learning higher-order cumulants in diffusion models
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
Lei Wang
K. Zhou
26
4
0
28 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
47
9
0
03 Oct 2024
Numerical determination of the width and shape of the effective string
  using Stochastic Normalizing Flows
Numerical determination of the width and shape of the effective string using Stochastic Normalizing Flows
M. Caselle
E. Cellini
A. Nada
28
4
0
24 Sep 2024
Practical applications of machine-learned flows on gauge fields
Practical applications of machine-learned flows on gauge fields
Ryan Abbott
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Fernando Romero-López
P. Shanahan
Julian M. Urban
AI4CE
33
11
0
17 Apr 2024
Multi-Lattice Sampling of Quantum Field Theories via Neural
  Operator-based Flows
Multi-Lattice Sampling of Quantum Field Theories via Neural Operator-based Flows
Bálint Máté
Franccois Fleuret
AI4CE
34
0
0
01 Jan 2024
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
34
40
0
04 Oct 2023
Diffusion Models as Stochastic Quantization in Lattice Field Theory
Diffusion Models as Stochastic Quantization in Lattice Field Theory
Lei Wang
Gert Aarts
Kai Zhou
DiffM
32
14
0
29 Sep 2023
Advances in machine-learning-based sampling motivated by lattice quantum
  chromodynamics
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
29
27
0
03 Sep 2023
Sampling the lattice Nambu-Goto string using Continuous Normalizing
  Flows
Sampling the lattice Nambu-Goto string using Continuous Normalizing Flows
M. Caselle
E. Cellini
A. Nada
25
14
0
03 Jul 2023
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Estimating the Euclidean quantum propagator with deep generative
  modeling of Feynman paths
Estimating the Euclidean quantum propagator with deep generative modeling of Feynman paths
Yanming Che
C. Gneiting
Franco Nori
17
6
0
06 Feb 2022
1