Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.08135
Cited By
Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges
20 January 2022
Nuria Rodríguez-Barroso
Daniel Jiménez López
M. V. Luzón
Francisco Herrera
Eugenio Martínez-Cámara
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Survey on Federated Learning Threats: concepts, taxonomy on attacks and defences, experimental study and challenges"
25 / 25 papers shown
Title
Decoding FL Defenses: Systemization, Pitfalls, and Remedies
M. A. Khan
Virat Shejwalkar
Yasra Chandio
Amir Houmansadr
Fatima M. Anwar
AAML
38
0
0
03 Feb 2025
Privacy-preserving datasets by capturing feature distributions with Conditional VAEs
Francesco Di Salvo
David Tafler
Sebastian Doerrich
Christian Ledig
CML
34
0
0
01 Aug 2024
DART: A Solution for Decentralized Federated Learning Model Robustness Analysis
Chao Feng
Alberto Huertas Celdrán
Jan von der Assen
Enrique Tomás Martínez Beltrán
Gérome Bovet
Burkhard Stiller
OOD
AAML
54
8
0
11 Jul 2024
Federated Learning with Flexible Architectures
Jong-Ik Park
Carlee Joe-Wong
FedML
39
3
0
14 Jun 2024
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
41
1
0
01 Jun 2024
A Systematic Review of Federated Generative Models
Ashkan Vedadi Gargary
Emiliano De Cristofaro
AI4CE
38
2
0
26 May 2024
Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and Insights
Maryam Ben Driss
Essaid Sabir
H. Elbiaze
Walid Saad
30
7
0
07 Dec 2023
FBChain: A Blockchain-based Federated Learning Model with Efficiency and Secure Communication
Yang Li
Chunhe Xia
Wei Liu
35
0
0
21 Nov 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
43
23
0
20 Jul 2023
Attacks on Robust Distributed Learning Schemes via Sensitivity Curve Maximization
Christian A. Schroth
Stefan Vlaski
A. Zoubir
FedML
55
1
0
27 Apr 2023
Protecting Federated Learning from Extreme Model Poisoning Attacks via Multidimensional Time Series Anomaly Detection
Edoardo Gabrielli
Dimitri Belli
Vittorio Miori
Gabriele Tolomei
AAML
13
4
0
29 Mar 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
84
47
0
21 Feb 2023
Poisoning Attacks and Defenses in Federated Learning: A Survey
S. Sagar
Chang-Sun Li
S. W. Loke
Jinho D. Choi
OOD
FedML
18
9
0
14 Jan 2023
New Challenges in Reinforcement Learning: A Survey of Security and Privacy
Yunjiao Lei
Dayong Ye
Sheng Shen
Yulei Sui
Tianqing Zhu
Wanlei Zhou
33
18
0
31 Dec 2022
Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges
Enrique Tomás Martínez Beltrán
Mario Quiles Pérez
Pedro Miguel Sánchez Sánchez
Sergio López Bernal
Gérome Bovet
M. Pérez
Gregorio Martínez Pérez
Alberto Huertas Celdrán
FedML
26
221
0
15 Nov 2022
Edge Security: Challenges and Issues
Xin Jin
Charalampos Katsis
Fan Sang
Jiahao Sun
A. Kundu
Ramana Rao Kompella
47
8
0
14 Jun 2022
Differential Privacy: What is all the noise about?
Roxana Dánger Mercaderes
35
3
0
19 May 2022
Studying the Robustness of Anti-adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum Sensors
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
T. Schenk
A. Iten
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
AAML
17
18
0
31 Jan 2022
DeSMP: Differential Privacy-exploited Stealthy Model Poisoning Attacks in Federated Learning
Md Tamjid Hossain
Shafkat Islam
S. Badsha
Haoting Shen
AAML
50
41
0
21 Sep 2021
GRNN: Generative Regression Neural Network -- A Data Leakage Attack for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
SILM
AAML
FedML
53
100
0
02 May 2021
Turning Federated Learning Systems Into Covert Channels
Gabriele Costa
Fabio Pinelli
S. Soderi
Gabriele Tolomei
FedML
37
10
0
21 Apr 2021
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
209
840
0
01 Mar 2021
Label Leakage and Protection in Two-party Split Learning
Oscar Li
Jiankai Sun
Xin Yang
Weihao Gao
Hongyi Zhang
Junyuan Xie
Virginia Smith
Chong-Jun Wang
FedML
124
139
0
17 Feb 2021
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
182
1,032
0
29 Nov 2018
1