Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.07708
Cited By
Debiased Graph Neural Networks with Agnostic Label Selection Bias
19 January 2022
Shaohua Fan
Xiao Wang
Chuan Shi
Kun Kuang
Nian Liu
Bai Wang
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Debiased Graph Neural Networks with Agnostic Label Selection Bias"
29 / 29 papers shown
Title
Causal invariant geographic network representations with feature and structural distribution shifts
Yuhan Wang
Silu He
Qinyao Luo
Hongyuan Yuan
Ling Zhao
Jiawei Zhu
Haifeng Li
OOD
64
0
0
25 Mar 2025
Contextual Representation Anchor Network to Alleviate Selection Bias in Few-Shot Drug Discovery
Ruifeng Li
Wei Liu
Xiangxin Zhou
Mingqian Li
Qiang Zhang
Hongyang Chen
Xuemin Lin
44
0
0
28 Oct 2024
DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification
Xiaoxue Han
Huzefa Rangwala
Yue Ning
BDL
OOD
CML
32
0
0
27 Oct 2024
Deep Graph Anomaly Detection: A Survey and New Perspectives
Hezhe Qiao
Hanghang Tong
Bo An
Irwin King
Charu Aggarwal
Guansong Pang
35
6
0
16 Sep 2024
Topology-Aware Dynamic Reweighting for Distribution Shifts on Graph
Weihuang Zheng
Jiashuo Liu
Jiaxing Li
Jiayun Wu
Peng Cui
Youyong Kong
OOD
41
0
0
03 Jun 2024
IENE: Identifying and Extrapolating the Node Environment for Out-of-Distribution Generalization on Graphs
Haoran Yang
Xiaobing Pei
Kai Yuan
27
0
0
02 Jun 2024
Learning Invariant Representations of Graph Neural Networks via Cluster Generalization
Donglin Xia
Xiao Wang
Nian Liu
Chuan Shi
45
10
0
06 Mar 2024
Graph Fairness Learning under Distribution Shifts
Yibo Li
Xiao Wang
Yujie Xing
Shaohua Fan
Ruijia Wang
Yaoqi Liu
Chuan Shi
OOD
36
7
0
30 Jan 2024
Alleviating Structural Distribution Shift in Graph Anomaly Detection
Yuan Gao
Xiang Wang
Xiangnan He
Zhenguang Liu
Huamin Feng
Yongdong Zhang
15
62
0
25 Jan 2024
Graph Contrastive Invariant Learning from the Causal Perspective
Yanhu Mo
Xiao Wang
Shaohua Fan
Chuan Shi
32
14
0
23 Jan 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
49
2
0
19 Dec 2023
Towards Human-like Perception: Learning Structural Causal Model in Heterogeneous Graph
Tianqianjin Lin
Kaisong Song
Zhuoren Jiang
Yangyang Kang
Weikang Yuan
Xurui Li
Changlong Sun
Cui Huang
Xiaozhong Liu
38
6
0
10 Dec 2023
Causality and Independence Enhancement for Biased Node Classification
Guoxin Chen
Yongqing Wang
Fangda Guo
Qinglang Guo
Jiangli Shao
Huawei Shen
Xueqi Cheng
CML
AI4CE
OOD
37
14
0
14 Oct 2023
Data-centric Graph Learning: A Survey
Jixi Liu
Deyu Bo
Cheng Yang
Haoran Dai
Qi Zhang
Yixin Xiao
Yufei Peng
Chuan Shi
GNN
27
19
0
08 Oct 2023
FRGNN: Mitigating the Impact of Distribution Shift on Graph Neural Networks via Test-Time Feature Reconstruction
Ruitian Ding
Jielong Yang
Feng Ji
Xionghu Zhong
Linbo Xie
34
1
0
18 Aug 2023
Graph Out-of-Distribution Generalization with Controllable Data Augmentation
Bin Lu
Xiaoying Gan
Ze Zhao
Shiyu Liang
Luoyi Fu
Xinbing Wang
Cheng Zhou
27
6
0
16 Aug 2023
Deep Stable Multi-Interest Learning for Out-of-distribution Sequential Recommendation
Qiang Liu
Zhaocheng Liu
Zhen Zhu
Shu Wu
Liang Wang
OOD
OODD
40
3
0
12 Apr 2023
Predicting the Silent Majority on Graphs: Knowledge Transferable Graph Neural Network
Wendong Bi
Bingbing Xu
Xiaoqian Sun
Li Xu
Huawei Shen
Xueqi Cheng
22
16
0
02 Feb 2023
Directed Acyclic Graph Structure Learning from Dynamic Graphs
Shaohua Fan
Shuyang Zhang
Xiao Wang
Chuan Shi
CML
36
5
0
30 Nov 2022
Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure
Shaohua Fan
Xiao Wang
Yanhu Mo
Chuan Shi
Jian Tang
CML
OOD
AI4CE
36
89
0
28 Sep 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
45
104
0
16 May 2022
Out-Of-Distribution Generalization on Graphs: A Survey
Haoyang Li
Xin Wang
Ziwei Zhang
Wenwu Zhu
OOD
CML
21
96
0
16 Feb 2022
Stable Prediction on Graphs with Agnostic Distribution Shift
Shengyu Zhang
Kun Kuang
J. Qiu
Jin Yu
Zhou Zhao
Hongxia Yang
Zhongfei Zhang
Fei Wu
OOD
39
8
0
08 Oct 2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
196
125
0
04 Jan 2021
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
94
561
0
04 Jan 2021
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
267
1,945
0
09 Jun 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,778
0
02 Mar 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1