ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.07598
  4. Cited By
Near-Optimal Sparse Allreduce for Distributed Deep Learning

Near-Optimal Sparse Allreduce for Distributed Deep Learning

19 January 2022
Shigang Li
Torsten Hoefler
ArXivPDFHTML

Papers citing "Near-Optimal Sparse Allreduce for Distributed Deep Learning"

9 / 9 papers shown
Title
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
Roy Miles
Pradyumna Reddy
Ismail Elezi
Jiankang Deng
VLM
43
3
0
28 May 2024
Communication-Efficient Large-Scale Distributed Deep Learning: A
  Comprehensive Survey
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
Feng Liang
Zhen Zhang
Haifeng Lu
Victor C. M. Leung
Yanyi Guo
Xiping Hu
GNN
37
6
0
09 Apr 2024
SignSGD with Federated Voting
SignSGD with Federated Voting
Chanho Park
H. Vincent Poor
Namyoon Lee
FedML
40
1
0
25 Mar 2024
STen: Productive and Efficient Sparsity in PyTorch
STen: Productive and Efficient Sparsity in PyTorch
Andrei Ivanov
Nikoli Dryden
Tal Ben-Nun
Saleh Ashkboos
Torsten Hoefler
34
4
0
15 Apr 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient
  Communications for Distributed Variational Inequalities
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
29
10
0
15 Feb 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware
  Communication Compression
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
24
25
0
24 Jan 2023
HammingMesh: A Network Topology for Large-Scale Deep Learning
HammingMesh: A Network Topology for Large-Scale Deep Learning
Torsten Hoefler
Tommaso Bonato
Daniele De Sensi
Salvatore Di Girolamo
Shigang Li
Marco Heddes
Jon Belk
Deepak Goel
Miguel Castro
Steve Scott
3DH
GNN
AI4CE
29
20
0
03 Sep 2022
Chimera: Efficiently Training Large-Scale Neural Networks with
  Bidirectional Pipelines
Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines
Shigang Li
Torsten Hoefler
GNN
AI4CE
LRM
80
131
0
14 Jul 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
1