ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.06461
  4. Cited By
Using machine learning to parametrize postmerger signals from binary
  neutron stars

Using machine learning to parametrize postmerger signals from binary neutron stars

17 January 2022
Tim Whittaker
W. East
Stephen R. Green
L. Lehner
Huan Yang
ArXivPDFHTML

Papers citing "Using machine learning to parametrize postmerger signals from binary neutron stars"

1 / 1 papers shown
Title
NeoSySPArtaN: A Neuro-Symbolic Spin Prediction Architecture for
  higher-order multipole waveforms from eccentric Binary Black Hole mergers
  using Numerical Relativity
NeoSySPArtaN: A Neuro-Symbolic Spin Prediction Architecture for higher-order multipole waveforms from eccentric Binary Black Hole mergers using Numerical Relativity
A. Vibho
A. A. Bataineh
17
0
0
20 Jul 2023
1