Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.05624
Cited By
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
14 January 2022
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next"
50 / 105 papers shown
Title
Large-scale Neural Solvers for Partial Differential Equations
Patrick Stiller
Friedrich Bethke
M. Böhme
R. Pausch
Sunna Torge
A. Debus
J. Vorberger
Michael Bussmann
Nico Hoffmann
AI4CE
31
26
0
08 Sep 2020
Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism
L. McClenny
U. Braga-Neto
PINN
68
452
0
07 Sep 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
109
896
0
28 Jul 2020
Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks
Qiming Zhu
Zeliang Liu
Jinhui Yan
PINN
AI4CE
17
300
0
28 Jul 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating a class of inverse problems for PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
30
263
0
29 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
105
2,516
0
17 Jun 2020
Deep learning of free boundary and Stefan problems
Sizhuang He
P. Perdikaris
102
81
0
04 Jun 2020
A nonlocal physics-informed deep learning framework using the peridynamic differential operator
E. Haghighat
A. Bekar
E. Madenci
R. Juanes
PINN
18
106
0
31 May 2020
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
116
51
0
02 May 2020
A Dual-Dimer Method for Training Physics-Constrained Neural Networks with Minimax Architecture
Dehao Liu
Yan Wang
95
73
0
01 May 2020
EikoNet: Solving the Eikonal equation with Deep Neural Networks
Jonathan D. Smith
Kamyar Azizzadenesheli
Zachary E. Ross
27
131
0
25 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
210
768
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
158
520
0
11 Mar 2020
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
58
578
0
13 Jan 2020
Physics-Informed Neural Networks for Multiphysics Data Assimilation with Application to Subsurface Transport
Qizhi He
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
AI4CE
42
258
0
06 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
54
227
0
05 Dec 2019
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
48
241
0
27 Nov 2019
Physics-Informed Neural Networks for Power Systems
George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
PINN
AI4CE
45
216
0
09 Nov 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
163
2,082
0
08 Oct 2019
PyDEns: a Python Framework for Solving Differential Equations with Neural Networks
A. Koryagin
R. Khudorozhkov
S. Tsimfer
OOD
AI4CE
23
32
0
25 Sep 2019
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
39
446
0
23 Sep 2019
DeepXDE: A deep learning library for solving differential equations
Lu Lu
Xuhui Meng
Zhiping Mao
George Karniadakis
PINN
AI4CE
82
1,513
0
10 Jul 2019
Physics Informed Extreme Learning Machine (PIELM) -- A rapid method for the numerical solution of partial differential equations
Vikas Dwivedi
Balaji Srinivasan
PINN
46
191
0
08 Jul 2019
Transfer learning enhanced physics informed neural network for phase-field modeling of fracture
S. Goswami
C. Anitescu
S. Chakraborty
Timon Rabczuk
PINN
39
602
0
04 Jul 2019
A Survey of Optimization Methods from a Machine Learning Perspective
Shiliang Sun
Zehui Cao
Han Zhu
Jing Zhao
39
554
0
17 Jun 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks
N. Geneva
N. Zabaras
AI4CE
27
270
0
13 Jun 2019
A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends
Saptarshi Sengupta
Sanchita Basak
P. Saikia
Sayak Paul
Vasilios Tsalavoutis
Frederick Ditliac Atiah
V. Ravi
R. Peters
AI4CE
73
332
0
30 May 2019
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
Boris N. Oreshkin
Dmitri Carpov
Nicolas Chapados
Yoshua Bengio
AI4TS
90
1,026
0
24 May 2019
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
Georgios Kissas
Yibo Yang
E. Hwuang
W. Witschey
John A. Detre
P. Perdikaris
AI4CE
103
368
0
13 May 2019
Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed Neural Networks
Dongkun Zhang
Ling Guo
George Karniadakis
AI4CE
50
212
0
03 May 2019
Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks
Zhi-Qin John Xu
Yaoyu Zhang
Yaoyu Zhang
Yan Xiao
Zheng Ma
117
509
0
19 Jan 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
70
860
0
18 Jan 2019
Deep Neural Network Approximation Theory
Dennis Elbrächter
Dmytro Perekrestenko
Philipp Grohs
Helmut Bölcskei
37
210
0
08 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
174
1,628
0
28 Dec 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
89
356
0
09 Nov 2018
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
99
359
0
05 Nov 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
68
1,088
0
28 Sep 2018
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
98
405
0
21 Sep 2018
Kernel Flows: from learning kernels from data into the abyss
H. Owhadi
G. Yoo
41
90
0
13 Aug 2018
Horovod: fast and easy distributed deep learning in TensorFlow
Alexander Sergeev
Mike Del Balso
59
1,218
0
15 Feb 2018
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
100
497
0
11 Feb 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINN
AI4CE
99
751
0
20 Jan 2018
Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
54
611
0
28 Nov 2017
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
68
912
0
28 Nov 2017
A unified deep artificial neural network approach to partial differential equations in complex geometries
Jens Berg
K. Nystrom
AI4CE
50
583
0
17 Nov 2017
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E. Weinan
Ting Yu
100
1,373
0
30 Sep 2017
DGM: A deep learning algorithm for solving partial differential equations
Justin A. Sirignano
K. Spiliopoulos
AI4CE
69
2,048
0
24 Aug 2017
A Brief Survey of Deep Reinforcement Learning
Kai Arulkumaran
M. Deisenroth
Miles Brundage
Anil Anthony Bharath
OffRL
99
2,792
0
19 Aug 2017
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
M. Raissi
George Karniadakis
AI4CE
PINN
58
1,134
0
02 Aug 2017
Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
53
267
0
29 Mar 2017
Previous
1
2
3
Next