Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.03178
Cited By
Swin Transformer coupling CNNs Makes Strong Contextual Encoders for VHR Image Road Extraction
10 January 2022
Tao Chen
Yiran Liu
Haoyu Jiang
Ruirui Li
ViT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Swin Transformer coupling CNNs Makes Strong Contextual Encoders for VHR Image Road Extraction"
5 / 5 papers shown
Title
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
505
3,709
0
24 Feb 2021
Towards Interpretable Semantic Segmentation via Gradient-weighted Class Activation Mapping
Kira Vinogradova
Alexandr Dibrov
E. Myers
FAtt
102
149
0
26 Feb 2020
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
268
3,122
0
19 May 2017
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
235
18,224
0
02 Jun 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
1.0K
15,795
0
02 Nov 2015
1