ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.03134
  4. Cited By
An Interpretable Federated Learning-based Network Intrusion Detection
  Framework

An Interpretable Federated Learning-based Network Intrusion Detection Framework

10 January 2022
Tian Dong
Song Li
Han Qiu
Jialiang Lu
    FedML
ArXivPDFHTML

Papers citing "An Interpretable Federated Learning-based Network Intrusion Detection Framework"

17 / 17 papers shown
Title
Interplay between Federated Learning and Explainable Artificial Intelligence: a Scoping Review
Interplay between Federated Learning and Explainable Artificial Intelligence: a Scoping Review
Luis M. Lopez-Ramos
Florian Leiser
Aditya Rastogi
Steven Hicks
Inga Strümke
V. Madai
Tobias Budig
Ali Sunyaev
A. Hilbert
144
2
0
07 Nov 2024
See through Gradients: Image Batch Recovery via GradInversion
See through Gradients: Image Batch Recovery via GradInversion
Hongxu Yin
Arun Mallya
Arash Vahdat
J. Álvarez
Jan Kautz
Pavlo Molchanov
FedML
48
467
0
15 Apr 2021
Model-Contrastive Federated Learning
Model-Contrastive Federated Learning
Qinbin Li
Bingsheng He
D. Song
FedML
60
1,024
0
30 Mar 2021
Privacy-preserving Collaborative Learning with Automatic Transformation
  Search
Privacy-preserving Collaborative Learning with Automatic Transformation Search
Wei Gao
Shangwei Guo
Tianwei Zhang
Han Qiu
Yonggang Wen
Yang Liu
60
46
0
25 Nov 2020
Deep Anomaly Detection for Time-series Data in Industrial IoT: A
  Communication-Efficient On-device Federated Learning Approach
Deep Anomaly Detection for Time-series Data in Industrial IoT: A Communication-Efficient On-device Federated Learning Approach
Yi Liu
S. Garg
Jiangtian Nie
Yan Zhang
Zehui Xiong
Jiawen Kang
M. S. Hossain
FedML
61
378
0
19 Jul 2020
iDLG: Improved Deep Leakage from Gradients
iDLG: Improved Deep Leakage from Gradients
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
57
631
0
08 Jan 2020
Machine Unlearning
Machine Unlearning
Lucas Bourtoule
Varun Chandrasekaran
Christopher A. Choquette-Choo
Hengrui Jia
Adelin Travers
Baiwu Zhang
David Lie
Nicolas Papernot
MU
110
830
0
09 Dec 2019
Federated Learning with Differential Privacy: Algorithms and Performance
  Analysis
Federated Learning with Differential Privacy: Algorithms and Performance Analysis
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Heng Yang
Farokhi Farhad
Shi Jin
Tony Q.S. Quek
H. Vincent Poor
FedML
97
1,589
0
01 Nov 2019
Deep Leakage from Gradients
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
73
2,185
0
21 Jun 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
90
5,105
0
14 Dec 2018
DÏoT: A Federated Self-learning Anomaly Detection System for IoT
DÏoT: A Federated Self-learning Anomaly Detection System for IoT
T. D. Nguyen
Samuel Marchal
Markus Miettinen
Hossein Fereidooni
Nadarajah Asokan
A. Sadeghi
122
490
0
20 Apr 2018
Kitsune: An Ensemble of Autoencoders for Online Network Intrusion
  Detection
Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection
Yisroel Mirsky
Tomer Doitshman
Yuval Elovici
A. Shabtai
63
803
0
25 Feb 2018
Federated Learning: Strategies for Improving Communication Efficiency
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
271
4,620
0
18 Oct 2016
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
474
37,815
0
09 Mar 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
251
17,328
0
17 Feb 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
201
18,922
0
20 Dec 2014
1