Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.02314
Cited By
RestoreDet: Degradation Equivariant Representation for Object Detection in Low Resolution Images
7 January 2022
Ziteng Cui
Yingying Zhu
Lin Gu
Guo-Jun Qi
Xiaoxiao Li
Peng Gao
Zenghui Zhang
Tatsuya Harada
Re-assign community
ArXiv
PDF
HTML
Papers citing
"RestoreDet: Degradation Equivariant Representation for Object Detection in Low Resolution Images"
8 / 58 papers shown
Title
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
167
1,934
0
24 Feb 2016
Studying Very Low Resolution Recognition Using Deep Networks
Zhangyang Wang
Shiyu Chang
Yingzhen Yang
Ding Liu
Thomas S. Huang
41
226
0
16 Jan 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
SSD: Single Shot MultiBox Detector
Wen Liu
Dragomir Anguelov
D. Erhan
Christian Szegedy
Scott E. Reed
Cheng-Yang Fu
Alexander C. Berg
ObjD
BDL
229
29,816
0
08 Dec 2015
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Jiwon Kim
Jung Kwon Lee
Kyoung Mu Lee
SupR
104
6,184
0
14 Nov 2015
Is Image Super-resolution Helpful for Other Vision Tasks?
Dengxin Dai
Yujian Wang
Yuhua Chen
Luc Van Gool
SupR
48
132
0
23 Sep 2015
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
688
36,935
0
08 Jun 2015
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,638
0
01 May 2014
Previous
1
2