ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.02265
  4. Cited By
Learning to be adversarially robust and differentially private

Learning to be adversarially robust and differentially private

6 January 2022
Jamie Hayes
Borja Balle
M. P. Kumar
    FedML
ArXivPDFHTML

Papers citing "Learning to be adversarially robust and differentially private"

2 / 2 papers shown
Title
SoK: Explainable Machine Learning for Computer Security Applications
SoK: Explainable Machine Learning for Computer Security Applications
A. Nadeem
D. Vos
Clinton Cao
Luca Pajola
Simon Dieck
Robert Baumgartner
S. Verwer
36
40
0
22 Aug 2022
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
104
572
0
08 Dec 2012
1