Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.00292
Cited By
v1
v2
v3
v4 (latest)
Fair Data Representation for Machine Learning at the Pareto Frontier
2 January 2022
Shizhou Xu
Thomas Strohmer
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Fair Data Representation for Machine Learning at the Pareto Frontier"
8 / 8 papers shown
Title
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
80
108
0
12 Jun 2020
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
69
181
0
28 Jul 2019
The Frontiers of Fairness in Machine Learning
Alexandra Chouldechova
Aaron Roth
FaML
194
416
0
20 Oct 2018
A Convex Framework for Fair Regression
R. Berk
Hoda Heidari
S. Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
FaML
117
342
0
07 Jun 2017
Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
205
1,213
0
26 Oct 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
233
4,330
0
07 Oct 2016
A fixed-point approach to barycenters in Wasserstein space
P. C. Álvarez-Esteban
E. del Barrio
J. A. Cuesta-Albertos
Carlos Matrán
71
193
0
17 Nov 2015
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
206
1,993
0
11 Dec 2014
1