Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.00217
Cited By
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
1 January 2022
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces"
22 / 22 papers shown
Title
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
446
5
0
05 Jan 2024
Stationary Density Estimation of Itô Diffusions Using Deep Learning
Yiqi Gu
J. Harlim
Senwei Liang
Haizhao Yang
46
12
0
09 Sep 2021
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
156
57
0
27 Aug 2021
Elementary superexpressive activations
Dmitry Yarotsky
56
35
0
22 Feb 2021
Sharp Bounds on the Approximation Rates, Metric Entropy, and
n
n
n
-widths of Shallow Neural Networks
Jonathan W. Siegel
Jinchao Xu
111
87
0
29 Jan 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
47
37
0
05 Jan 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
480
2,397
0
18 Oct 2020
Estimates on the generalization error of Physics Informed Neural Networks (PINNs) for approximating PDEs
Siddhartha Mishra
Roberto Molinaro
PINN
57
173
0
29 Jun 2020
Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory
Yaoyu Zhang
Haizhao Yang
48
75
0
28 Jun 2020
Neural Operator: Graph Kernel Network for Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
181
732
0
07 Mar 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
97
247
0
09 Jan 2020
Deep Learning on Image Denoising: An overview
Chunwei Tian
Lunke Fei
Wenxian Zheng
Yong-mei Xu
W. Zuo
Chia-Wen Lin
190
829
0
31 Dec 2019
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
220
2,119
0
08 Oct 2019
Learning to Synthesize: Robust Phase Retrieval at Low Photon counts
Mo Deng
Shuai Li
A. Goy
Iksung Kang
George Barbastathis
162
69
0
26 Jul 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
80
389
0
30 May 2019
SwitchNet: a neural network model for forward and inverse scattering problems
Y. Khoo
Lexing Ying
170
134
0
23 Oct 2018
Deep Neural Networks for Estimation and Inference
M. Farrell
Tengyuan Liang
S. Misra
BDL
164
254
0
26 Sep 2018
Optimal approximation of continuous functions by very deep ReLU networks
Dmitry Yarotsky
176
293
0
10 Feb 2018
Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification
Yinhao Zhu
N. Zabaras
UQCV
BDL
94
642
0
21 Jan 2018
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
218
810
0
22 Aug 2017
Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks
Peter L. Bartlett
Nick Harvey
Christopher Liaw
Abbas Mehrabian
199
431
0
08 Mar 2017
Provable approximation properties for deep neural networks
Uri Shaham
A. Cloninger
Ronald R. Coifman
151
231
0
24 Sep 2015
1