ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.15577
  4. Cited By
How Infinitely Wide Neural Networks Can Benefit from Multi-task Learning
  -- an Exact Macroscopic Characterization

How Infinitely Wide Neural Networks Can Benefit from Multi-task Learning -- an Exact Macroscopic Characterization

31 December 2021
Jakob Heiss
Josef Teichmann
Hanna Wutte
    MLT
ArXivPDFHTML

Papers citing "How Infinitely Wide Neural Networks Can Benefit from Multi-task Learning -- an Exact Macroscopic Characterization"

3 / 3 papers shown
Title
Efficiently Identifying Task Groupings for Multi-Task Learning
Efficiently Identifying Task Groupings for Multi-Task Learning
Christopher Fifty
Ehsan Amid
Zhe Zhao
Tianhe Yu
Rohan Anil
Chelsea Finn
213
238
1
10 Sep 2021
Facebook AI WMT21 News Translation Task Submission
Facebook AI WMT21 News Translation Task Submission
C. Tran
Shruti Bhosale
James Cross
Philipp Koehn
Sergey Edunov
Angela Fan
VLM
134
81
0
06 Aug 2021
NOMU: Neural Optimization-based Model Uncertainty
NOMU: Neural Optimization-based Model Uncertainty
Jakob Heiss
Jakob Weissteiner
Hanna Wutte
Sven Seuken
Josef Teichmann
BDL
37
19
0
26 Feb 2021
1