ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.15400
  4. Cited By
A Theoretical Understanding of Gradient Bias in Meta-Reinforcement
  Learning

A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning

31 December 2021
Xidong Feng
Bo Liu
Jie Ren
Luo Mai
Rui Zhu
Haifeng Zhang
Jun Wang
Yaodong Yang
ArXivPDFHTML

Papers citing "A Theoretical Understanding of Gradient Bias in Meta-Reinforcement Learning"

34 / 34 papers shown
Title
TorchOpt: An Efficient Library for Differentiable Optimization
TorchOpt: An Efficient Library for Differentiable Optimization
Jie Ren
Xidong Feng
Bo Liu
Xuehai Pan
Yao Fu
Kai Zou
Yaodong Yang
52
12
0
13 Nov 2022
An Investigation of the Bias-Variance Tradeoff in Meta-Gradients
An Investigation of the Bias-Variance Tradeoff in Meta-Gradients
Risto Vuorio
Jacob Beck
Shimon Whiteson
Jakob N. Foerster
Gregory Farquhar
64
7
0
22 Sep 2022
One Step at a Time: Pros and Cons of Multi-Step Meta-Gradient
  Reinforcement Learning
One Step at a Time: Pros and Cons of Multi-Step Meta-Gradient Reinforcement Learning
Clément Bonnet
Paul Caron
Thomas D. Barrett
Ian Davies
Alexandre Laterre
32
5
0
30 Oct 2021
Unifying Gradient Estimators for Meta-Reinforcement Learning via
  Off-Policy Evaluation
Unifying Gradient Estimators for Meta-Reinforcement Learning via Off-Policy Evaluation
Yunhao Tang
Tadashi Kozuno
Mark Rowland
Rémi Munos
Michal Valko
OffRL
100
9
0
24 Jun 2021
Discovery of Options via Meta-Learned Subgoals
Discovery of Options via Meta-Learned Subgoals
Vivek Veeriah
Tom Zahavy
Matteo Hessel
Zhongwen Xu
Junhyuk Oh
Iurii Kemaev
H. V. Hasselt
David Silver
Satinder Singh
46
33
0
12 Feb 2021
Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping
Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping
Yujing Hu
Weixun Wang
Hangtian Jia
Yixiang Wang
Yingfeng Chen
Jianye Hao
Feng Wu
Changjie Fan
OffRL
57
176
0
05 Nov 2020
A Policy Gradient Algorithm for Learning to Learn in Multiagent
  Reinforcement Learning
A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement Learning
Dong-Ki Kim
Miao Liu
Matthew D Riemer
Chuangchuang Sun
Marwa Abdulhai
Golnaz Habibi
Sebastian Lopez-Cot
Gerald Tesauro
Jonathan P. How
46
56
0
31 Oct 2020
Towards Effective Context for Meta-Reinforcement Learning: an Approach
  based on Contrastive Learning
Towards Effective Context for Meta-Reinforcement Learning: an Approach based on Contrastive Learning
Haotian Fu
Hongyao Tang
Jianye Hao
Chong Chen
Xidong Feng
Dong Li
Wulong Liu
OffRL
58
50
0
29 Sep 2020
Discovering Reinforcement Learning Algorithms
Discovering Reinforcement Learning Algorithms
Junhyuk Oh
Matteo Hessel
Wojciech M. Czarnecki
Zhongwen Xu
H. V. Hasselt
Satinder Singh
David Silver
62
129
0
17 Jul 2020
Meta-Gradient Reinforcement Learning with an Objective Discovered Online
Meta-Gradient Reinforcement Learning with an Objective Discovered Online
Zhongwen Xu
H. V. Hasselt
Matteo Hessel
Junhyuk Oh
Satinder Singh
David Silver
71
77
0
16 Jul 2020
Online Meta-Critic Learning for Off-Policy Actor-Critic Methods
Online Meta-Critic Learning for Off-Policy Actor-Critic Methods
Wei Zhou
Yiying Li
Yongxin Yang
Huaimin Wang
Timothy M. Hospedales
OffRL
55
47
0
11 Mar 2020
Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning
Kaiyi Ji
Junjie Yang
Yingbin Liang
75
50
0
18 Feb 2020
On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement
  Learning
On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning
Alireza Fallah
Kristian Georgiev
Aryan Mokhtari
Asuman Ozdaglar
114
23
0
12 Feb 2020
What Can Learned Intrinsic Rewards Capture?
What Can Learned Intrinsic Rewards Capture?
Zeyu Zheng
Junhyuk Oh
Matteo Hessel
Zhongwen Xu
M. Kroiss
H. V. Hasselt
David Silver
Satinder Singh
50
77
0
11 Dec 2019
Improving Generalization in Meta Reinforcement Learning using Learned
  Objectives
Improving Generalization in Meta Reinforcement Learning using Learned Objectives
Louis Kirsch
Sjoerd van Steenkiste
Jürgen Schmidhuber
OffRL
69
119
0
09 Oct 2019
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function
  Estimators for Reinforcement Learning
Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Estimators for Reinforcement Learning
Gregory Farquhar
Shimon Whiteson
Jakob N. Foerster
56
17
0
23 Sep 2019
Discovery of Useful Questions as Auxiliary Tasks
Discovery of Useful Questions as Auxiliary Tasks
Vivek Veeriah
Matteo Hessel
Zhongwen Xu
Richard L. Lewis
Janarthanan Rajendran
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
LLMAG
61
85
0
10 Sep 2019
On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning
  Algorithms
On the Convergence Theory of Gradient-Based Model-Agnostic Meta-Learning Algorithms
Alireza Fallah
Aryan Mokhtari
Asuman Ozdaglar
78
225
0
27 Aug 2019
Meta-Learning via Learned Loss
Meta-Learning via Learned Loss
Sarah Bechtle
Artem Molchanov
Yevgen Chebotar
Edward Grefenstette
Ludovic Righetti
Gaurav Sukhatme
Franziska Meier
65
111
0
12 Jun 2019
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic
  Context Variables
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables
Kate Rakelly
Aurick Zhou
Deirdre Quillen
Chelsea Finn
Sergey Levine
OffRL
78
653
0
19 Mar 2019
Stable Opponent Shaping in Differentiable Games
Stable Opponent Shaping in Differentiable Games
Alistair Letcher
Jakob N. Foerster
David Balduzzi
Tim Rocktaschel
Shimon Whiteson
67
110
0
20 Nov 2018
ProMP: Proximal Meta-Policy Search
ProMP: Proximal Meta-Policy Search
Jonas Rothfuss
Dennis Lee
I. Clavera
Tamim Asfour
Pieter Abbeel
55
210
0
16 Oct 2018
Meta-Gradient Reinforcement Learning
Meta-Gradient Reinforcement Learning
Zhongwen Xu
H. V. Hasselt
David Silver
104
324
0
24 May 2018
On Learning Intrinsic Rewards for Policy Gradient Methods
On Learning Intrinsic Rewards for Policy Gradient Methods
Zeyu Zheng
Junhyuk Oh
Satinder Singh
57
205
0
17 Apr 2018
Meta-Reinforcement Learning of Structured Exploration Strategies
Meta-Reinforcement Learning of Structured Exploration Strategies
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
OffRL
84
342
0
20 Feb 2018
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
Jakob N. Foerster
Gregory Farquhar
Maruan Al-Shedivat
Tim Rocktaschel
Eric Xing
Shimon Whiteson
44
97
0
14 Feb 2018
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive
  Environments
Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments
Maruan Al-Shedivat
Trapit Bansal
Yuri Burda
Ilya Sutskever
Igor Mordatch
Pieter Abbeel
CLL
63
353
0
10 Oct 2017
Learning with Opponent-Learning Awareness
Learning with Opponent-Learning Awareness
Jakob N. Foerster
Richard Y. Chen
Maruan Al-Shedivat
Shimon Whiteson
Pieter Abbeel
Igor Mordatch
89
538
0
13 Sep 2017
Online Learning Rate Adaptation with Hypergradient Descent
Online Learning Rate Adaptation with Hypergradient Descent
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark Schmidt
Frank Wood
ODL
61
246
0
14 Mar 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
806
11,866
0
09 Mar 2017
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
207
416
0
06 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
95
977
0
17 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
76
1,015
0
09 Nov 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
189
8,833
0
04 Feb 2016
1