ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.14792
  4. Cited By
Graph Neural Networks for Communication Networks: Context, Use Cases and
  Opportunities
v1v2 (latest)

Graph Neural Networks for Communication Networks: Context, Use Cases and Opportunities

29 December 2021
José Suárez-Varela
Paul Almasan
Miquel Ferriol Galmés
Krzysztof Rusek
Fabien Geyer
Xiangle Cheng
Xiang Shi
Shihan Xiao
F. Scarselli
A. Cabellos-Aparicio
Pere Barlet-Ros
    GNNAI4CE
ArXiv (abs)PDFHTML

Papers citing "Graph Neural Networks for Communication Networks: Context, Use Cases and Opportunities"

8 / 8 papers shown
Title
IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking
  Systems
IGNNITION: Bridging the Gap Between Graph Neural Networks and Networking Systems
David Pujol-Perich
José Suárez-Varela
Miquel Ferriol
Shihan Xiao
Bo-Xi Wu
A. Cabellos-Aparicio
Pere Barlet-Ros
GNNAI4CE
115
18
0
14 Sep 2021
Graph Neural Networks for Scalable Radio Resource Management:
  Architecture Design and Theoretical Analysis
Graph Neural Networks for Scalable Radio Resource Management: Architecture Design and Theoretical Analysis
Yifei Shen
Yuanming Shi
Jun Zhang
Khaled B. Letaief
GNN
37
264
0
15 Jul 2020
Learning Combinatorial Optimization on Graphs: A Survey with
  Applications to Networking
Learning Combinatorial Optimization on Graphs: A Survey with Applications to Networking
N. Vesselinova
Rebecca Steinert
Daniel F. Perez-Ramirez
Magnus Boman
GNNAI4CE
71
146
0
22 May 2020
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CEGNN
1.1K
5,527
0
20 Dec 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CENAI
764
3,129
0
04 Jun 2018
Experience-driven Networking: A Deep Reinforcement Learning based
  Approach
Experience-driven Networking: A Deep Reinforcement Learning based Approach
Zhiyuan Xu
Jian Tang
Jingsong Meng
Weiyi Zhang
Yanzhi Wang
C. Liu
Dejun Yang
OffRL
60
362
0
17 Jan 2018
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
596
7,485
0
04 Apr 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
810
3,291
0
24 Nov 2016
1