ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.13398
  4. Cited By
Long Story Short: Omitted Variable Bias in Causal Machine Learning

Long Story Short: Omitted Variable Bias in Causal Machine Learning

26 December 2021
Victor Chernozhukov
Carlos Cinelli
Whitney Newey
Amit Sharma
Vasilis Syrgkanis
    CML
ArXivPDFHTML

Papers citing "Long Story Short: Omitted Variable Bias in Causal Machine Learning"

15 / 15 papers shown
Title
Segment Discovery: Enhancing E-commerce Targeting
Segment Discovery: Enhancing E-commerce Targeting
Qiqi Li
Roopali Singh
Charin Polpanumas
Tanner Fiez
Namita Kumar
Shreya Chakrabarti
48
1
0
31 Dec 2024
Isolated Causal Effects of Natural Language
Isolated Causal Effects of Natural Language
Victoria Lin
Louis-Philippe Morency
Eli Ben-Michael
CML
36
1
0
18 Oct 2024
The Fragility of Fairness: Causal Sensitivity Analysis for Fair Machine
  Learning
The Fragility of Fairness: Causal Sensitivity Analysis for Fair Machine Learning
Jake Fawkes
Nic Fishman
Mel Andrews
Zachary C. Lipton
43
1
0
12 Oct 2024
Estimating Wage Disparities Using Foundation Models
Estimating Wage Disparities Using Foundation Models
Keyon Vafa
Susan Athey
David M. Blei
80
1
0
15 Sep 2024
Multiply-Robust Causal Change Attribution
Multiply-Robust Causal Change Attribution
Victor Quintas-Martinez
M. T. Bahadori
Eduardo Santiago
Jeff Mu
Dominik Janzing
David Heckerman
CML
34
1
0
12 Apr 2024
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision
  Processes
Efficient and Sharp Off-Policy Evaluation in Robust Markov Decision Processes
Andrew Bennett
Nathan Kallus
M. Oprescu
Wen Sun
Kaiwen Wang
AAML
OffRL
53
1
0
29 Mar 2024
Applied Causal Inference Powered by ML and AI
Applied Causal Inference Powered by ML and AI
Victor Chernozhukov
Christian Hansen
Nathan Kallus
Martin Spindler
Vasilis Syrgkanis
CML
36
29
0
04 Mar 2024
Accelerating Causal Algorithms for Industrial-scale Data: A Distributed
  Computing Approach with Ray Framework
Accelerating Causal Algorithms for Industrial-scale Data: A Distributed Computing Approach with Ray Framework
Vishal Verma
Vinod Reddy
Jaiprakash Ravi
29
0
0
22 Jan 2024
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
  Hidden Confounding
B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding
M. Oprescu
Jacob Dorn
Marah Ghoummaid
Andrew Jesson
Nathan Kallus
Uri Shalit
CML
FedML
24
24
0
20 Apr 2023
Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous
  Unobserved Confounders
Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous Unobserved Confounders
David Bruns-Smith
Angela Zhou
OffRL
18
9
0
01 Feb 2023
Robust Design and Evaluation of Predictive Algorithms under Unobserved
  Confounding
Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding
Ashesh Rambachan
Amanda Coston
Edward H. Kennedy
16
4
0
19 Dec 2022
Distributionally Robust Causal Inference with Observational Data
Distributionally Robust Causal Inference with Observational Data
Dimitris Bertsimas
Kosuke Imai
Michael Lingzhi Li
OOD
53
9
0
15 Oct 2022
Quantitative probing: Validating causal models using quantitative domain
  knowledge
Quantitative probing: Validating causal models using quantitative domain knowledge
Daniel Grünbaum
M. L. Stern
E. Lang
20
5
0
07 Sep 2022
Partial Identification of Dose Responses with Hidden Confounders
Partial Identification of Dose Responses with Hidden Confounders
Myrl G. Marmarelis
E. Haddad
Andrew Jesson
N. Jahanshad
Aram Galstyan
Greg Ver Steeg
CML
33
7
0
24 Apr 2022
Rethinking recidivism through a causal lens
Rethinking recidivism through a causal lens
Vik Shirvaikar
C. Lakshminarayan
CML
39
0
0
19 Nov 2020
1