ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.13314
  4. Cited By
Silent Bugs in Deep Learning Frameworks: An Empirical Study of Keras and
  TensorFlow

Silent Bugs in Deep Learning Frameworks: An Empirical Study of Keras and TensorFlow

26 December 2021
Florian Tambon
Amin Nikanjam
Le An
Foutse Khomh
G. Antoniol
ArXivPDFHTML

Papers citing "Silent Bugs in Deep Learning Frameworks: An Empirical Study of Keras and TensorFlow"

8 / 8 papers shown
Title
A Survey on Failure Analysis and Fault Injection in AI Systems
A Survey on Failure Analysis and Fault Injection in AI Systems
Guangba Yu
Gou Tan
Haojia Huang
Zhenyu Zhang
Pengfei Chen
Roberto Natella
Zibin Zheng
39
4
0
28 Jun 2024
Enhancing Differential Testing With LLMs For Testing Deep Learning Libraries
Enhancing Differential Testing With LLMs For Testing Deep Learning Libraries
Meiziniu Li
Dongze Li
Jianmeng Liu
Jialun Cao
Yongqiang Tian
Shing-Chi Cheung
64
1
0
12 Jun 2024
Bugs in Large Language Models Generated Code: An Empirical Study
Bugs in Large Language Models Generated Code: An Empirical Study
Florian Tambon
Arghavan Moradi Dakhel
Amin Nikanjam
Foutse Khomh
Michel C. Desmarais
G. Antoniol
ELM
42
33
0
13 Mar 2024
Bug Characterization in Machine Learning-based Systems
Bug Characterization in Machine Learning-based Systems
Mohammad Mehdi Morovati
Amin Nikanjam
Florian Tambon
Foutse Khomh
Zhen Ming
Z. Jiang
31
20
0
26 Jul 2023
An Empirical Study on Bugs Inside PyTorch: A Replication Study
An Empirical Study on Bugs Inside PyTorch: A Replication Study
Sharon Chee Yin Ho
Vahid Majdinasab
Mohayeminul Islam
D. Costa
Emad Shihab
Foutse Khomh
Sarah Nadi
Muhammad Raza
9
6
0
25 Jul 2023
Comparative analysis of real bugs in open-source Machine Learning
  projects -- A Registered Report
Comparative analysis of real bugs in open-source Machine Learning projects -- A Registered Report
Tuan Dung Lai
Anj Simmons
Scott Barnett
Jean-Guy Schneider
Rajesh Vasa
11
1
0
20 Sep 2022
COMET: Coverage-guided Model Generation For Deep Learning Library
  Testing
COMET: Coverage-guided Model Generation For Deep Learning Library Testing
Meiziniu Li
Jialun Cao
Yongqiang Tian
T. Li
Ming Wen
Shing-Chi Cheung
VLM
26
19
0
02 Aug 2022
Challenges in Migrating Imperative Deep Learning Programs to Graph
  Execution: An Empirical Study
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study
Tatiana Castro Vélez
Raffi Khatchadourian
M. Bagherzadeh
A. Raja
13
9
0
24 Jan 2022
1