ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.09245
  4. Cited By
Automated Deep Learning: Neural Architecture Search Is Not the End

Automated Deep Learning: Neural Architecture Search Is Not the End

16 December 2021
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
ArXivPDFHTML

Papers citing "Automated Deep Learning: Neural Architecture Search Is Not the End"

32 / 182 papers shown
Title
Designing Energy-Efficient Convolutional Neural Networks using
  Energy-Aware Pruning
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning
Tien-Ju Yang
Yu-hsin Chen
Vivienne Sze
3DV
68
737
0
16 Nov 2016
RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning
RL2^22: Fast Reinforcement Learning via Slow Reinforcement Learning
Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
OffRL
67
1,011
0
09 Nov 2016
Designing Neural Network Architectures using Reinforcement Learning
Designing Neural Network Architectures using Reinforcement Learning
Bowen Baker
O. Gupta
Nikhil Naik
Ramesh Raskar
82
1,466
0
07 Nov 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
375
5,346
0
05 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
212
5,323
0
03 Nov 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
95
3,420
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
611
36,599
0
25 Aug 2016
A Greedy Approach to Adapting the Trace Parameter for Temporal
  Difference Learning
A Greedy Approach to Adapting the Trace Parameter for Temporal Difference Learning
Martha White
Adam White
42
47
0
02 Jul 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLL
OOD
SSL
241
4,357
0
29 Jun 2016
SQuAD: 100,000+ Questions for Machine Comprehension of Text
SQuAD: 100,000+ Questions for Machine Comprehension of Text
Pranav Rajpurkar
Jian Zhang
Konstantin Lopyrev
Percy Liang
RALM
142
8,067
0
16 Jun 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
77
2,000
0
14 Jun 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
160
2,307
0
21 Mar 2016
Hyperparameter optimization with approximate gradient
Hyperparameter optimization with approximate gradient
Fabian Pedregosa
85
449
0
07 Feb 2016
EIE: Efficient Inference Engine on Compressed Deep Neural Network
EIE: Efficient Inference Engine on Compressed Deep Neural Network
Song Han
Xingyu Liu
Huizi Mao
Jing Pu
A. Pedram
M. Horowitz
W. Dally
93
2,453
0
04 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Scalable Gradient-Based Tuning of Continuous Regularization
  Hyperparameters
Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters
Jelena Luketina
Mathias Berglund
Klaus Greff
T. Raiko
44
173
0
20 Nov 2015
Net2Net: Accelerating Learning via Knowledge Transfer
Net2Net: Accelerating Learning via Knowledge Transfer
Tianqi Chen
Ian Goodfellow
Jonathon Shlens
88
663
0
18 Nov 2015
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
189
8,793
0
01 Oct 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
225
19,448
0
09 Mar 2015
Non-stochastic Best Arm Identification and Hyperparameter Optimization
Non-stochastic Best Arm Identification and Hyperparameter Optimization
Kevin Jamieson
Ameet Talwalkar
138
570
0
27 Feb 2015
Gradient-based Hyperparameter Optimization through Reversible Learning
Gradient-based Hyperparameter Optimization through Reversible Learning
D. Maclaurin
David Duvenaud
Ryan P. Adams
DD
163
941
0
11 Feb 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
286
43,154
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
736
149,474
0
22 Dec 2014
Unsupervised Domain Adaptation by Backpropagation
Unsupervised Domain Adaptation by Backpropagation
Yaroslav Ganin
Victor Lempitsky
OOD
211
5,972
0
26 Sep 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
289
43,511
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
860
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.0K
39,383
0
01 Sep 2014
Freeze-Thaw Bayesian Optimization
Freeze-Thaw Bayesian Optimization
Kevin Swersky
Jasper Snoek
Ryan P. Adams
64
268
0
16 Jun 2014
Deep Learning in Neural Networks: An Overview
Deep Learning in Neural Networks: An Overview
Jürgen Schmidhuber
HAI
167
16,311
0
30 Apr 2014
ParamILS: An Automatic Algorithm Configuration Framework
ParamILS: An Automatic Algorithm Configuration Framework
Frank Hutter
Thomas Stuetzle
Kevin Leyton-Brown
T. Stützle
68
1,066
0
15 Jan 2014
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
275
7,883
0
13 Jun 2012
Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples
Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples
Zhi Zhou
Yu-Yin Sun
Yu-Feng Li
100
475
0
12 Jul 2008
Previous
1234