ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.08761
  4. Cited By
DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems

DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems

16 December 2021
Martin Rapp
R. Khalili
Kilian Pfeiffer
J. Henkel
ArXivPDFHTML

Papers citing "DISTREAL: Distributed Resource-Aware Learning in Heterogeneous Systems"

37 / 37 papers shown
Title
Moss: Proxy Model-based Full-Weight Aggregation in Federated Learning with Heterogeneous Models
Y. Cai
Ziqi Zhang
Ding Li
Yao Guo
Xiangqun Chen
136
0
0
13 Mar 2025
THOR: A Generic Energy Estimation Approach for On-Device Training
THOR: A Generic Energy Estimation Approach for On-Device Training
Jiaru Zhang
Zesong Wang
Hao Wang
Tao Song
Huai-an Su
...
Yang Hua
Xiangwei Zhou
Ruhui Ma
Miao Pan
Haibing Guan
97
0
0
27 Jan 2025
Dynamic Slimmable Network
Dynamic Slimmable Network
Changlin Li
Guangrun Wang
Bing Wang
Xiaodan Liang
Zhihui Li
Xiaojun Chang
58
144
0
24 Mar 2021
HW-NAS-Bench:Hardware-Aware Neural Architecture Search Benchmark
HW-NAS-Bench:Hardware-Aware Neural Architecture Search Benchmark
Chaojian Li
Zhongzhi Yu
Yonggan Fu
Yongan Zhang
Yang Zhao
Haoran You
Qixuan Yu
Yue Wang
Yingyan Lin
99
110
0
19 Mar 2021
FjORD: Fair and Accurate Federated Learning under heterogeneous targets
  with Ordered Dropout
FjORD: Fair and Accurate Federated Learning under heterogeneous targets with Ordered Dropout
Samuel Horváth
Stefanos Laskaridis
Mario Almeida
Ilias Leondiadis
Stylianos I. Venieris
Nicholas D. Lane
210
273
0
26 Feb 2021
HeteroFL: Computation and Communication Efficient Federated Learning for
  Heterogeneous Clients
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
96
556
0
03 Oct 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
97
1,038
0
12 Jun 2020
Distributed Learning on Heterogeneous Resource-Constrained Devices
Distributed Learning on Heterogeneous Resource-Constrained Devices
Martin Rapp
R. Khalili
J. Henkel
FedML
36
7
0
09 Jun 2020
Federated Learning for Resource-Constrained IoT Devices: Panoramas and
  State-of-the-art
Federated Learning for Resource-Constrained IoT Devices: Panoramas and State-of-the-art
Ahmed Imteaj
Urmish Thakker
Shiqiang Wang
Jian Li
M. Amini
47
61
0
25 Feb 2020
Communication-Efficient Edge AI: Algorithms and Systems
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
56
334
0
22 Feb 2020
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box
  Knowledge Transfer
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
75
168
0
24 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
396
42,299
0
03 Dec 2019
Helios: Heterogeneity-Aware Federated Learning with Dynamically Balanced
  Collaboration
Helios: Heterogeneity-Aware Federated Learning with Dynamically Balanced Collaboration
Zirui Xu
Zhao Yang
Jinjun Xiong
Xiang Chen
FedML
83
59
0
03 Dec 2019
On-Device Machine Learning: An Algorithms and Learning Theory
  Perspective
On-Device Machine Learning: An Algorithms and Learning Theory Perspective
Sauptik Dhar
Junyao Guo
Jiayi Liu
S. Tripathi
Unmesh Kurup
Mohak Shah
64
142
0
02 Nov 2019
FedMD: Heterogenous Federated Learning via Model Distillation
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
88
853
0
08 Oct 2019
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
112
4,496
0
21 Aug 2019
FedHealth: A Federated Transfer Learning Framework for Wearable
  Healthcare
FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare
Yiqiang Chen
Jindong Wang
Chaohui Yu
Wen Gao
Xin Qin
FedML
73
717
0
22 Jul 2019
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Compressing RNNs for IoT devices by 15-38x using Kronecker Products
Urmish Thakker
Jesse G. Beu
Dibakar Gope
Chu Zhou
Igor Fedorov
Ganesh S. Dasika
Matthew Mattina
46
36
0
07 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
131
18,058
0
28 May 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with
  Edge Computing
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
88
1,439
0
24 May 2019
Asynchronous Federated Optimization
Asynchronous Federated Optimization
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
FedML
65
566
0
10 Mar 2019
Towards Federated Learning at Scale: System Design
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
121
2,660
0
04 Feb 2019
Lifelong Federated Reinforcement Learning: A Learning Architecture for
  Navigation in Cloud Robotic Systems
Lifelong Federated Reinforcement Learning: A Learning Architecture for Navigation in Cloud Robotic Systems
Boyi Liu
Lujia Wang
Ming-Yuan Liu
65
249
0
19 Jan 2019
Slimmable Neural Networks
Slimmable Neural Networks
Jiahui Yu
L. Yang
N. Xu
Jianchao Yang
Thomas Huang
71
552
0
21 Dec 2018
Expanding the Reach of Federated Learning by Reducing Client Resource
  Requirements
Expanding the Reach of Federated Learning by Reducing Client Resource Requirements
S. Caldas
Jakub Konecný
H. B. McMahan
Ameet Talwalkar
59
449
0
18 Dec 2018
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
173
5,148
0
14 Dec 2018
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Timothy Yang
Galen Andrew
Hubert Eichner
Haicheng Sun
Wei Li
Nicholas Kong
Daniel Ramage
F. Beaufays
FedML
85
625
0
07 Dec 2018
LEAF: A Benchmark for Federated Settings
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
134
1,417
0
03 Dec 2018
Approximate Random Dropout
Approximate Random Dropout
Zhuoran Song
Ru Wang
Dongyu Ru
Hongru Huang
Zhenghao Peng
Hai Zhao
Xiaoyao Liang
Li Jiang
BDL
39
9
0
23 May 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
85
1,312
0
12 Mar 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,813
0
17 Apr 2017
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
729
36,708
0
25 Aug 2016
Runtime Configurable Deep Neural Networks for Energy-Accuracy Trade-off
Runtime Configurable Deep Neural Networks for Energy-Accuracy Trade-off
Hokchhay Tann
S. Hashemi
R. I. Bahar
Sherief Reda
51
72
0
19 Jul 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
203
2,352
0
30 Mar 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning
Volodymyr Mnih
Adria Puigdomenech Badia
M. Berk Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
191
8,833
0
04 Feb 2016
Efficient batchwise dropout training using submatrices
Efficient batchwise dropout training using submatrices
Ben Graham
Jeremy Reizenstein
Leigh Robinson
54
14
0
09 Feb 2015
1