ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.08676
  4. Cited By
Machine Learning-Accelerated Computational Solid Mechanics: Application
  to Linear Elasticity

Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity

16 December 2021
Rajat Arora
    AI4CE
ArXivPDFHTML

Papers citing "Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity"

10 / 10 papers shown
Title
Physics-informed neural networks for modeling rate- and
  temperature-dependent plasticity
Physics-informed neural networks for modeling rate- and temperature-dependent plasticity
Rajat Arora
P. Kakkar
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
86
20
0
20 Jan 2022
Physics informed deep learning for computational elastodynamics without
  labeled data
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
59
225
0
10 Jun 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
231
141
0
01 May 2020
Turbulence Enrichment using Physics-informed Generative Adversarial
  Networks
Turbulence Enrichment using Physics-informed Generative Adversarial Networks
Akshay Subramaniam
Man Long Wong
Raunak Borker
S. Nimmagadda
S. Lele
GAN
AI4CE
82
38
0
04 Mar 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
511
42,449
0
03 Dec 2019
Using Physics-Informed Super-Resolution Generative Adversarial Networks
  for Subgrid Modeling in Turbulent Reactive Flows
Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
AI4CE
57
21
0
26 Nov 2019
Residual Dense Network for Image Super-Resolution
Residual Dense Network for Image Super-Resolution
Yulun Zhang
Yapeng Tian
Yu Kong
Bineng Zhong
Y. Fu
SupR
138
3,320
0
24 Feb 2018
Physics Informed Deep Learning (Part I): Data-driven Solutions of
  Nonlinear Partial Differential Equations
Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
M. Raissi
P. Perdikaris
George Karniadakis
PINN
AI4CE
77
924
0
28 Nov 2017
Accelerating the Super-Resolution Convolutional Neural Network
Accelerating the Super-Resolution Convolutional Neural Network
Chao Dong
Chen Change Loy
Xiaoou Tang
SupR
127
2,983
0
01 Aug 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
1