ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.08453
  4. Cited By
The Need for Ethical, Responsible, and Trustworthy Artificial
  Intelligence for Environmental Sciences

The Need for Ethical, Responsible, and Trustworthy Artificial Intelligence for Environmental Sciences

15 December 2021
A. McGovern
I. Ebert‐Uphoff
D. Gagne
A. Bostrom
ArXiv (abs)PDFHTML

Papers citing "The Need for Ethical, Responsible, and Trustworthy Artificial Intelligence for Environmental Sciences"

10 / 10 papers shown
Title
Explainable AI-Based Interface System for Weather Forecasting Model
Explainable AI-Based Interface System for Weather Forecasting Model
Soyeon Kim
Junho Choi
Yeji Choi
Subeen Lee
Artyom Stitsyuk
Minkyoung Park
Seongyeop Jeong
Youhyun Baek
Jaesik Choi
XAI
119
2
0
01 Apr 2025
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
298
30,150
0
01 Mar 2022
A Survey on Green Deep Learning
A Survey on Green Deep Learning
Jingjing Xu
Wangchunshu Zhou
Zhiyi Fu
Hao Zhou
Lei Li
VLM
157
84
0
08 Nov 2021
Skillful Precipitation Nowcasting using Deep Generative Models of Radar
Skillful Precipitation Nowcasting using Deep Generative Models of Radar
Suman V. Ravuri
Karel Lenc
Matthew Willson
D. Kangin
Rémi R. Lam
...
R. Hadsell
Nial H. Robinson
Ellen Clancy
A. Arribas
S. Mohamed
AI4Cl
178
741
0
02 Apr 2021
Development and Interpretation of a Neural Network-Based Synthetic Radar
  Reflectivity Estimator Using GOES-R Satellite Observations
Development and Interpretation of a Neural Network-Based Synthetic Radar Reflectivity Estimator Using GOES-R Satellite Observations
Kyle Hilburn
I. Ebert‐Uphoff
S. Miller
63
52
0
16 Apr 2020
Machine Learning for Stochastic Parameterization: Generative Adversarial
  Networks in the Lorenz '96 Model
Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz '96 Model
D. Gagne
H. Christensen
A. Subramanian
A. Monahan
AI4CEBDL
109
143
0
10 Sep 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDaFaML
571
4,391
0
23 Aug 2019
Green AI
Green AI
Roy Schwartz
Jesse Dodge
Noah A. Smith
Oren Etzioni
119
1,149
0
22 Jul 2019
Adversarial Risk and Robustness: General Definitions and Implications
  for the Uniform Distribution
Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
41
72
0
29 Oct 2018
Explanation Methods in Deep Learning: Users, Values, Concerns and
  Challenges
Explanation Methods in Deep Learning: Users, Values, Concerns and Challenges
Gabrielle Ras
Marcel van Gerven
W. Haselager
XAI
107
219
0
20 Mar 2018
1