Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.08304
Cited By
On the Convergence and Robustness of Adversarial Training
15 December 2021
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Convergence and Robustness of Adversarial Training"
50 / 211 papers shown
Title
Multi-objective Search of Robust Neural Architectures against Multiple Types of Adversarial Attacks
Jia-Wei Liu
Yaochu Jin
AAML
OOD
18
36
0
16 Jan 2021
Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks
Yige Li
Lingjuan Lyu
Nodens Koren
X. Lyu
Bo-wen Li
Xingjun Ma
AAML
FedML
11
428
0
15 Jan 2021
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
156
190
0
13 Jan 2021
DiPSeN: Differentially Private Self-normalizing Neural Networks For Adversarial Robustness in Federated Learning
Olakunle Ibitoye
M. O. Shafiq
Ashraf Matrawy
FedML
28
18
0
08 Jan 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
22
11
0
22 Dec 2020
Adversarially Robust Estimate and Risk Analysis in Linear Regression
Yue Xing
Ruizhi Zhang
Guang Cheng
AAML
28
27
0
18 Dec 2020
Characterizing the Evasion Attackability of Multi-label Classifiers
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
16
10
0
17 Dec 2020
Amata: An Annealing Mechanism for Adversarial Training Acceleration
Nanyang Ye
Qianxiao Li
Xiao-Yun Zhou
Zhanxing Zhu
AAML
32
15
0
15 Dec 2020
Mitigating the Impact of Adversarial Attacks in Very Deep Networks
Mohammed Hassanin
Ibrahim Radwan
Nour Moustafa
M. Tahtali
Neeraj Kumar
AAML
18
5
0
08 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
183
355
0
07 Dec 2020
Bridging the Performance Gap between FGSM and PGD Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
14
17
0
07 Nov 2020
Maximum Mean Discrepancy Test is Aware of Adversarial Attacks
Ruize Gao
Feng Liu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Masashi Sugiyama
AAML
19
51
0
22 Oct 2020
Towards Understanding the Dynamics of the First-Order Adversaries
Zhun Deng
Hangfeng He
Jiaoyang Huang
Weijie J. Su
AAML
25
11
0
20 Oct 2020
Robust Neural Networks inspired by Strong Stability Preserving Runge-Kutta methods
Byungjoo Kim
Bryce Chudomelka
Jinyoung Park
Jaewoo Kang
Youngjoon Hong
Hyunwoo J. Kim
AAML
12
6
0
20 Oct 2020
A Unified Approach to Interpreting and Boosting Adversarial Transferability
Xin Wang
Jie Ren
Shuyu Lin
Xiangming Zhu
Yisen Wang
Quanshi Zhang
AAML
29
94
0
08 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan Kankanhalli
AAML
47
269
0
05 Oct 2020
Do Wider Neural Networks Really Help Adversarial Robustness?
Boxi Wu
Jinghui Chen
Deng Cai
Xiaofei He
Quanquan Gu
AAML
14
95
0
03 Oct 2020
Efficient Robust Training via Backward Smoothing
Jinghui Chen
Yu Cheng
Zhe Gan
Quanquan Gu
Jingjing Liu
AAML
24
40
0
03 Oct 2020
Bag of Tricks for Adversarial Training
Tianyu Pang
Xiao Yang
Yinpeng Dong
Hang Su
Jun Zhu
AAML
25
261
0
01 Oct 2020
Improving Query Efficiency of Black-box Adversarial Attack
Yang Bai
Yuyuan Zeng
Yong Jiang
Yisen Wang
Shutao Xia
Weiwei Guo
AAML
MLAU
37
52
0
24 Sep 2020
Detection of Iterative Adversarial Attacks via Counter Attack
Matthias Rottmann
Kira Maag
Mathis Peyron
N. Krejić
Hanno Gottschalk
AAML
6
4
0
23 Sep 2020
Adversarial Robustness through Bias Variance Decomposition: A New Perspective for Federated Learning
Yao Zhou
Jun Wu
Haixun Wang
Jingrui He
AAML
FedML
36
26
0
18 Sep 2020
Bluff: Interactively Deciphering Adversarial Attacks on Deep Neural Networks
Nilaksh Das
Haekyu Park
Zijie J. Wang
Fred Hohman
Robert Firstman
Emily Rogers
Duen Horng Chau
AAML
23
26
0
05 Sep 2020
An Integrated Approach to Produce Robust Models with High Efficiency
Zhijian Li
Bao Wang
Jack Xin
MQ
AAML
20
3
0
31 Aug 2020
On the Generalization Properties of Adversarial Training
Yue Xing
Qifan Song
Guang Cheng
AAML
25
32
0
15 Aug 2020
Adversarial Training and Provable Robustness: A Tale of Two Objectives
Jiameng Fan
Wenchao Li
AAML
23
20
0
13 Aug 2020
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
26
284
0
06 Jul 2020
Reflection Backdoor: A Natural Backdoor Attack on Deep Neural Networks
Yunfei Liu
Xingjun Ma
James Bailey
Feng Lu
AAML
22
504
0
05 Jul 2020
Diverse Knowledge Distillation (DKD): A Solution for Improving The Robustness of Ensemble Models Against Adversarial Attacks
Ali Mirzaeian
Jana Kosecka
Houman Homayoun
Tinoosh Mohsening
Avesta Sasan
FedML
AAML
25
3
0
26 Jun 2020
Smooth Adversarial Training
Cihang Xie
Mingxing Tan
Boqing Gong
Alan Yuille
Quoc V. Le
OOD
30
152
0
25 Jun 2020
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness
Xingjun Ma
Linxi Jiang
Hanxun Huang
Zejia Weng
James Bailey
Yu-Gang Jiang
AAML
28
10
0
24 Jun 2020
RayS: A Ray Searching Method for Hard-label Adversarial Attack
Jinghui Chen
Quanquan Gu
AAML
10
137
0
23 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Towards Understanding Fast Adversarial Training
Bai Li
Shiqi Wang
Suman Jana
Lawrence Carin
AAML
32
50
0
04 Jun 2020
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
50
16
0
28 May 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
37
147
0
20 May 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
26
18
0
19 May 2020
Robust Deep Learning as Optimal Control: Insights and Convergence Guarantees
Jacob H. Seidman
Mahyar Fazlyab
V. Preciado
George J. Pappas
AAML
16
15
0
01 May 2020
Adversarial Weight Perturbation Helps Robust Generalization
Dongxian Wu
Shutao Xia
Yisen Wang
OOD
AAML
14
17
0
13 Apr 2020
SAT: Improving Adversarial Training via Curriculum-Based Loss Smoothing
Chawin Sitawarin
S. Chakraborty
David Wagner
AAML
25
37
0
18 Mar 2020
Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles
Ranjie Duan
Xingjun Ma
Yisen Wang
James Bailey
•. A. K. Qin
Yun Yang
AAML
167
224
0
08 Mar 2020
Sparsity Meets Robustness: Channel Pruning for the Feynman-Kac Formalism Principled Robust Deep Neural Nets
Thu Dinh
Bao Wang
Andrea L. Bertozzi
Stanley J. Osher
AAML
14
16
0
02 Mar 2020
Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models
Xiao Zhang
Jinghui Chen
Quanquan Gu
David Evans
26
17
0
01 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
33
397
0
26 Feb 2020
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
28
43
0
21 Feb 2020
Boosting Adversarial Training with Hypersphere Embedding
Tianyu Pang
Xiao Yang
Yinpeng Dong
Kun Xu
Jun Zhu
Hang Su
AAML
33
154
0
20 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OOD
AAML
27
114
0
17 Feb 2020
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets
Dongxian Wu
Yisen Wang
Shutao Xia
James Bailey
Xingjun Ma
AAML
SILM
19
310
0
14 Feb 2020
Improving the affordability of robustness training for DNNs
Sidharth Gupta
Parijat Dube
Ashish Verma
AAML
27
15
0
11 Feb 2020
Walking on the Edge: Fast, Low-Distortion Adversarial Examples
Hanwei Zhang
Yannis Avrithis
Teddy Furon
Laurent Amsaleg
AAML
17
45
0
04 Dec 2019
Previous
1
2
3
4
5
Next