ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.07522
  4. Cited By
LMTurk: Few-Shot Learners as Crowdsourcing Workers in a
  Language-Model-as-a-Service Framework

LMTurk: Few-Shot Learners as Crowdsourcing Workers in a Language-Model-as-a-Service Framework

14 December 2021
Mengjie Zhao
Fei Mi
Yasheng Wang
Minglei Li
Xin Jiang
Qun Liu
Hinrich Schütze
    RALM
ArXivPDFHTML

Papers citing "LMTurk: Few-Shot Learners as Crowdsourcing Workers in a Language-Model-as-a-Service Framework"

17 / 67 papers shown
Title
SuperGLUE: A Stickier Benchmark for General-Purpose Language
  Understanding Systems
SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems
Alex Jinpeng Wang
Yada Pruksachatkun
Nikita Nangia
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
232
2,307
0
02 May 2019
Fine-Grained Argument Unit Recognition and Classification
Fine-Grained Argument Unit Recognition and Classification
Dietrich Trautmann
Johannes Daxenberger
Christian Stab
Hinrich Schütze
Iryna Gurevych
36
64
0
22 Apr 2019
Linguistic Knowledge and Transferability of Contextual Representations
Linguistic Knowledge and Transferability of Contextual Representations
Nelson F. Liu
Matt Gardner
Yonatan Belinkov
Matthew E. Peters
Noah A. Smith
113
730
0
21 Mar 2019
Parameter-Efficient Transfer Learning for NLP
Parameter-Efficient Transfer Learning for NLP
N. Houlsby
A. Giurgiu
Stanislaw Jastrzebski
Bruna Morrone
Quentin de Laroussilhe
Andrea Gesmundo
Mona Attariyan
Sylvain Gelly
208
4,439
0
02 Feb 2019
Analysis Methods in Neural Language Processing: A Survey
Analysis Methods in Neural Language Processing: A Survey
Yonatan Belinkov
James R. Glass
75
555
0
21 Dec 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.5K
94,511
0
11 Oct 2018
Empirical Methodology for Crowdsourcing Ground Truth
Empirical Methodology for Crowdsourcing Ground Truth
Anca Dumitrache
Oana Inel
Benjamin Timmermans
Carlos Martinez-Ortiz
Robert-Jan Sips
Lora Aroyo
Chris Welty
HILM
103
17
0
24 Sep 2018
Deep Bayesian Active Learning for Natural Language Processing: Results
  of a Large-Scale Empirical Study
Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study
Aditya Siddhant
Zachary Chase Lipton
AI4CE
BDL
55
206
0
16 Aug 2018
Finding Convincing Arguments Using Scalable Bayesian Preference Learning
Finding Convincing Arguments Using Scalable Bayesian Preference Learning
Edwin Simpson
Iryna Gurevych
BDL
40
52
0
06 Jun 2018
Neural Network Acceptability Judgments
Neural Network Acceptability Judgments
Alex Warstadt
Amanpreet Singh
Samuel R. Bowman
209
1,406
0
31 May 2018
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
886
7,141
0
20 Apr 2018
Deep contextualized word representations
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
184
11,542
0
15 Feb 2018
Deep Active Learning for Named Entity Recognition
Deep Active Learning for Named Entity Recognition
Yanyao Shen
Hyokun Yun
Zachary Chase Lipton
Y. Kronrod
Anima Anandkumar
HAI
79
457
0
19 Jul 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
249
5,812
0
14 Jun 2017
Character-level Convolutional Networks for Text Classification
Character-level Convolutional Networks for Text Classification
Xiang Zhang
Jiaqi Zhao
Yann LeCun
244
6,101
0
04 Sep 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
310
19,609
0
09 Mar 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.4K
149,842
0
22 Dec 2014
Previous
12