ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.06511
  4. Cited By
Ex-Model: Continual Learning from a Stream of Trained Models

Ex-Model: Continual Learning from a Stream of Trained Models

13 December 2021
Antonio Carta
Andrea Cossu
Vincenzo Lomonaco
D. Bacciu
    CLL
ArXivPDFHTML

Papers citing "Ex-Model: Continual Learning from a Stream of Trained Models"

15 / 15 papers shown
Title
A distillation-based approach integrating continual learning and
  federated learning for pervasive services
A distillation-based approach integrating continual learning and federated learning for pervasive services
Anastasiia Usmanova
Franccois Portet
P. Lalanda
Germán Vega
FedML
67
55
0
09 Sep 2021
Always Be Dreaming: A New Approach for Data-Free Class-Incremental
  Learning
Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning
James Smith
Yen-Chang Hsu
John C. Balloch
Yilin Shen
Hongxia Jin
Z. Kira
CLL
93
166
0
17 Jun 2021
Knowledge distillation: A good teacher is patient and consistent
Knowledge distillation: A good teacher is patient and consistent
Lucas Beyer
Xiaohua Zhai
Amelie Royer
L. Markeeva
Rohan Anil
Alexander Kolesnikov
VLM
92
293
0
09 Jun 2021
Replay in Deep Learning: Current Approaches and Missing Biological
  Elements
Replay in Deep Learning: Current Approaches and Missing Biological Elements
Tyler L. Hayes
G. Krishnan
M. Bazhenov
H. Siegelmann
T. Sejnowski
Christopher Kanan
CLL
60
131
0
01 Apr 2021
Avalanche: an End-to-End Library for Continual Learning
Avalanche: an End-to-End Library for Continual Learning
Vincenzo Lomonaco
Lorenzo Pellegrini
Andrea Cossu
Antonio Carta
G. Graffieti
...
Christopher Kanan
Joost van de Weijer
Tinne Tuytelaars
D. Bacciu
Davide Maltoni
BDL
AI4TS
65
182
0
01 Apr 2021
Class-incremental learning: survey and performance evaluation on image
  classification
Class-incremental learning: survey and performance evaluation on image classification
Marc Masana
Xialei Liu
Bartlomiej Twardowski
Mikel Menta
Andrew D. Bagdanov
Joost van de Weijer
CLL
73
685
0
28 Oct 2020
Federated Continual Learning with Weighted Inter-client Transfer
Federated Continual Learning with Weighted Inter-client Transfer
Jaehong Yoon
Wonyoung Jeong
Giwoong Lee
Eunho Yang
Sung Ju Hwang
FedML
72
207
0
06 Mar 2020
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Hongxu Yin
Pavlo Molchanov
Zhizhong Li
J. Álvarez
Arun Mallya
Derek Hoiem
N. Jha
Jan Kautz
60
563
0
18 Dec 2019
Continual Learning for Robotics: Definition, Framework, Learning
  Strategies, Opportunities and Challenges
Continual Learning for Robotics: Definition, Framework, Learning Strategies, Opportunities and Challenges
Timothée Lesort
Vincenzo Lomonaco
Andrei Stoian
Davide Maltoni
David Filliat
Natalia Díaz Rodríguez
CLL
56
249
0
29 Jun 2019
Zero-Shot Knowledge Distillation in Deep Networks
Zero-Shot Knowledge Distillation in Deep Networks
Gaurav Kumar Nayak
Konda Reddy Mopuri
Vaisakh Shaj
R. Venkatesh Babu
Anirban Chakraborty
73
245
0
20 May 2019
Class-incremental Learning via Deep Model Consolidation
Class-incremental Learning via Deep Model Consolidation
Junting Zhang
Jie Zhang
Shalini Ghosh
Dawei Li
Serafettin Tasci
Larry Heck
Heming Zhang
C.-C. Jay Kuo
CLL
55
338
0
19 Mar 2019
FearNet: Brain-Inspired Model for Incremental Learning
FearNet: Brain-Inspired Model for Incremental Learning
Ronald Kemker
Christopher Kanan
CLL
93
476
0
28 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
226
8,856
0
25 Aug 2017
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLL
OOD
SSL
272
4,388
0
29 Jun 2016
Understanding Deep Image Representations by Inverting Them
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
99
1,962
0
26 Nov 2014
1