ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.06288
  4. Cited By
Fairness for Robust Learning to Rank

Fairness for Robust Learning to Rank

12 December 2021
Omid Memarrast
Ashkan Rezaei
Rizal Fathony
Brian Ziebart
    FaML
ArXivPDFHTML

Papers citing "Fairness for Robust Learning to Rank"

10 / 10 papers shown
Title
FairRec: Two-Sided Fairness for Personalized Recommendations in
  Two-Sided Platforms
FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms
Gourab K. Patro
Arpita Biswas
Niloy Ganguly
Krishna P. Gummadi
Abhijnan Chakraborty
FaML
60
233
0
25 Feb 2020
Pairwise Fairness for Ranking and Regression
Pairwise Fairness for Ranking and Regression
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
S. Wang
64
114
0
12 Jun 2019
Fairness-Aware Ranking in Search & Recommendation Systems with
  Application to LinkedIn Talent Search
Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search
S. Geyik
Stuart Ambler
K. Kenthapadi
88
381
0
30 Apr 2019
The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and
  the xAUC Metric
The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the xAUC Metric
Nathan Kallus
Angela Zhou
79
74
0
15 Feb 2019
Classification with Fairness Constraints: A Meta-Algorithm with Provable
  Guarantees
Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees
L. E. Celis
Lingxiao Huang
Vijay Keswani
Nisheeth K. Vishnoi
FaML
180
308
0
15 Jun 2018
A Reductions Approach to Fair Classification
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
198
1,099
0
06 Mar 2018
Empirical Risk Minimization under Fairness Constraints
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
76
444
0
23 Feb 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
356
681
0
17 Feb 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
120
3,938
0
06 Feb 2018
Certifying and removing disparate impact
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
171
1,984
0
11 Dec 2014
1