ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04882
  4. Cited By
Evaluating saliency methods on artificial data with different background
  types

Evaluating saliency methods on artificial data with different background types

9 December 2021
Céline Budding
Fabian Eitel
K. Ritter
Stefan Haufe
    XAI
    FAtt
    MedIm
ArXivPDFHTML

Papers citing "Evaluating saliency methods on artificial data with different background types"

4 / 4 papers shown
Title
Explainable AI needs formal notions of explanation correctness
Explainable AI needs formal notions of explanation correctness
Stefan Haufe
Rick Wilming
Benedict Clark
Rustam Zhumagambetov
Danny Panknin
Ahcène Boubekki
XAI
31
1
0
22 Sep 2024
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI
  Benchmarks
Decoupling Pixel Flipping and Occlusion Strategy for Consistent XAI Benchmarks
Stefan Blücher
Johanna Vielhaben
Nils Strodthoff
AAML
63
20
0
12 Jan 2024
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural
  Network Explanations and Beyond
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
16
168
0
14 Feb 2022
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1