Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.04590
Cited By
The perils of being unhinged: On the accuracy of classifiers minimizing a noise-robust convex loss
8 December 2021
Philip M. Long
Rocco A. Servedio
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The perils of being unhinged: On the accuracy of classifiers minimizing a noise-robust convex loss"
9 / 9 papers shown
Title
On Symmetric Losses for Learning from Corrupted Labels
Nontawat Charoenphakdee
Jongyeong Lee
Masashi Sugiyama
NoLa
51
105
0
27 Jan 2019
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
74
2,595
0
20 May 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLa
OOD
61
955
0
27 Dec 2017
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
121
913
0
27 Oct 2017
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
90
1,448
0
13 Sep 2016
Learning with Symmetric Label Noise: The Importance of Being Unhinged
Brendan van Rooyen
A. Menon
Robert C. Williamson
NoLa
133
311
0
28 May 2015
Making Risk Minimization Tolerant to Label Noise
Aritra Ghosh
Naresh Manwani
P. Sastry
NoLa
116
214
0
14 Mar 2014
Margins, Shrinkage, and Boosting
Matus Telgarsky
57
73
0
18 Mar 2013
Noise Tolerance under Risk Minimization
Naresh Manwani
S. M. I. P. S. Sastry
NoLa
150
276
0
24 Sep 2011
1