ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04470
  4. Cited By
Optimistic Rates: A Unifying Theory for Interpolation Learning and
  Regularization in Linear Regression

Optimistic Rates: A Unifying Theory for Interpolation Learning and Regularization in Linear Regression

8 December 2021
Lijia Zhou
Frederic Koehler
Danica J. Sutherland
Nathan Srebro
ArXivPDFHTML

Papers citing "Optimistic Rates: A Unifying Theory for Interpolation Learning and Regularization in Linear Regression"

5 / 5 papers shown
Title
Tight bounds for maximum $\ell_1$-margin classifiers
Tight bounds for maximum ℓ1\ell_1ℓ1​-margin classifiers
Stefan Stojanovic
Konstantin Donhauser
Fanny Yang
35
0
0
07 Dec 2022
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized
  Linear Models
A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models
Lijia Zhou
Frederic Koehler
Pragya Sur
Danica J. Sutherland
Nathan Srebro
83
9
0
21 Oct 2022
Foolish Crowds Support Benign Overfitting
Foolish Crowds Support Benign Overfitting
Niladri S. Chatterji
Philip M. Long
83
20
0
06 Oct 2021
Failures of model-dependent generalization bounds for least-norm
  interpolation
Failures of model-dependent generalization bounds for least-norm interpolation
Peter L. Bartlett
Philip M. Long
80
29
0
16 Oct 2020
Learning without Concentration
Learning without Concentration
S. Mendelson
85
334
0
01 Jan 2014
1