ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04185
  4. Cited By
Transformaly -- Two (Feature Spaces) Are Better Than One
v1v2 (latest)

Transformaly -- Two (Feature Spaces) Are Better Than One

8 December 2021
M. Cohen
S. Avidan
    ViT
ArXiv (abs)PDFHTMLGithub (23★)

Papers citing "Transformaly -- Two (Feature Spaces) Are Better Than One"

31 / 31 papers shown
Title
A graph neural network-based model with Out-of-Distribution Robustness for enhancing Antiretroviral Therapy Outcome Prediction for HIV-1
A graph neural network-based model with Out-of-Distribution Robustness for enhancing Antiretroviral Therapy Outcome Prediction for HIV-1
Giulia Di Teodoro
F. Siciliano
V. Guarrasi
A. Vandamme
Valeria Ghisetti
Anders Sönnerborg
Maurizio Zazzi
Fabrizio Silvestri
L. Palagi
185
8
0
24 Feb 2025
Killing it with Zero-Shot: Adversarially Robust Novelty Detection
Hossein Mirzaei
Mohammad Jafari
Hamid Reza Dehbashi
Zeinab Sadat Taghavi
Mohammad Sabokrou
M. Rohban
111
2
0
28 Jan 2025
Set Features for Anomaly Detection
Set Features for Anomaly Detection
Niv Cohen
Issar Tzachor
Yedid Hoshen
158
0
0
24 Nov 2023
Mean-Shifted Contrastive Loss for Anomaly Detection
Mean-Shifted Contrastive Loss for Anomaly Detection
Tal Reiss
Yedid Hoshen
77
118
0
07 Jun 2021
Do We Really Need to Learn Representations from In-domain Data for
  Outlier Detection?
Do We Really Need to Learn Representations from In-domain Data for Outlier Detection?
Zhisheng Xiao
Qing Yan
Y. Amit
OODUQCV
47
18
0
19 May 2021
Inpainting Transformer for Anomaly Detection
Inpainting Transformer for Anomaly Detection
Jonathan Pirnay
K. Chai
ViT
174
168
0
28 Apr 2021
ImageNet-21K Pretraining for the Masses
ImageNet-21K Pretraining for the Masses
T. Ridnik
Emanuel Ben-Baruch
Asaf Noy
Lihi Zelnik-Manor
SSegVLMCLIP
324
711
0
22 Apr 2021
VT-ADL: A Vision Transformer Network for Image Anomaly Detection and
  Localization
VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization
P. Mishra
Riccardo Verk
Daniele Fornasier
C. Piciarelli
G. Foresti
ViT
110
303
0
20 Apr 2021
CutPaste: Self-Supervised Learning for Anomaly Detection and
  Localization
CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
Chun-Liang Li
Kihyuk Sohn
Jinsung Yoon
Tomas Pfister
SSLUQCV
90
782
0
08 Apr 2021
Learning and Evaluating Representations for Deep One-class
  Classification
Learning and Evaluating Representations for Deep One-class Classification
Kihyuk Sohn
Chun-Liang Li
Jinsung Yoon
Minho Jin
Tomas Pfister
SSL
134
201
0
04 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
670
41,430
0
22 Oct 2020
PANDA: Adapting Pretrained Features for Anomaly Detection and
  Segmentation
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Tal Reiss
Niv Cohen
Liron Bergman
Yedid Hoshen
69
252
0
12 Oct 2020
Puzzle-AE: Novelty Detection in Images through Solving Puzzles
Puzzle-AE: Novelty Detection in Images through Solving Puzzles
Mohammadreza Salehi
Ainaz Eftekhar
Niousha Sadjadi
M. Rohban
Hamid R. Rabiee
AAML
134
43
0
29 Aug 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally
  Shifted Instances
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
85
604
0
16 Jul 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
395
6,837
0
13 Jun 2020
Classification-Based Anomaly Detection for General Data
Classification-Based Anomaly Detection for General Data
Liron Bergman
Yedid Hoshen
52
351
0
05 May 2020
Pretrained Transformers Improve Out-of-Distribution Robustness
Pretrained Transformers Improve Out-of-Distribution Robustness
Dan Hendrycks
Xiaoyuan Liu
Eric Wallace
Adam Dziedzic
R. Krishnan
Basel Alomair
OOD
199
435
0
13 Apr 2020
Deep Nearest Neighbor Anomaly Detection
Deep Nearest Neighbor Anomaly Detection
Liron Bergman
Niv Cohen
Yedid Hoshen
UQCV
87
160
0
24 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
378
18,866
0
13 Feb 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
213
12,124
0
13 Nov 2019
Uninformed Students: Student-Teacher Anomaly Detection with
  Discriminative Latent Embeddings
Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings
Paul Bergmann
Michael Fauser
David Sattlegger
C. Steger
84
665
0
06 Nov 2019
Detecting semantic anomalies
Detecting semantic anomalies
Faruk Ahmed
Aaron Courville
53
83
0
13 Aug 2019
Using Self-Supervised Learning Can Improve Model Robustness and
  Uncertainty
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OODSSL
56
948
0
28 Jun 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,487
0
11 Dec 2018
Anomaly Detection with Generative Adversarial Networks for Multivariate
  Time Series
Anomaly Detection with Generative Adversarial Networks for Multivariate Time Series
Dan Li
Dacheng Chen
Jonathan Goh
See-kiong Ng
AI4TS
61
297
0
13 Sep 2018
Out-of-Distribution Detection Using an Ensemble of Self Supervised
  Leave-out Classifiers
Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers
Apoorv Vyas
Nataraj Jammalamadaka
Xia Zhu
Dipankar Das
Bharat Kaul
Theodore L. Willke
OODD
74
247
0
04 Sep 2018
Deep Anomaly Detection Using Geometric Transformations
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
97
606
0
28 May 2018
Efficient GAN-Based Anomaly Detection
Efficient GAN-Based Anomaly Detection
Houssam Zenati
Chuan-Sheng Foo
Bruno Lecouat
Gaurav Manek
V. Chandrasekhar
45
563
0
17 Feb 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,920
0
25 Aug 2017
Enhancing The Reliability of Out-of-distribution Image Detection in
  Neural Networks
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang
Yixuan Li
R. Srikant
UQCVOODD
171
2,081
0
08 Jun 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
168
3,472
0
07 Oct 2016
1