ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.04123
  4. Cited By
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and
  Practical Perspectives

ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

8 December 2021
Toshinori Kitamura
Ryo Yonetani
    OffRL
ArXivPDFHTML

Papers citing "ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives"

3 / 3 papers shown
Title
Regularization and Variance-Weighted Regression Achieves Minimax
  Optimality in Linear MDPs: Theory and Practice
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
M. Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
30
2
0
22 May 2023
Continual Reinforcement Learning with TELLA
Continual Reinforcement Learning with TELLA
Neil Fendley
Cash Costello
Eric Q. Nguyen
Gino Perrotta
Corey Lowman
CLL
19
2
0
08 Aug 2022
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
  Open Problems
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
340
1,963
0
04 May 2020
1